![]()
Лента событий:
fortpost решил задачу "Арифметическая прогрессия в хвосте квадрата - 2" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
35
всего попыток:
36
Дана равнобедренная трапеция АВСD с основаниями 6 и 24 и высотой 20. Найдите величину наименьшей суммы расстояний: |PA|+|PB|+|PC|+|PD|, где Р – точка внутри трапеции (или на границе). ![]()
Задачу решили:
27
всего попыток:
52
Решите неравенство: А(х) / В(х) <= 0, где числитель В качестве ответа укажите значение выражения |m1| + |m2| + …, где m1, m2, …– середины ненулевой длины конечных промежутков решения неравенства. ![]()
Задачу решили:
36
всего попыток:
41
Рассматриваются площади всех выпуклых четырёхугольников ABCD, со сторонами |AB|=13, |BC|=77, |CD|=84 и |АD|=36. Найдите значение наибольшей площади. ![]()
Задачу решили:
22
всего попыток:
23
В выпуклом пятиугольнике длины сторон по часовой стрелке равны (последовательно) 13, 21, 28, 36 и 43. Докажите, что в такой пятиугольник нельзя вписать окружность. ![]()
Задачу решили:
30
всего попыток:
51
Дан равносторонний треугольник KMN (|КМ|=32), вершины которого являются центрами квадратов, построенных на сторонах некоторого треугольника АВС. Найдите площадь треугольника АВС, а в ответе укажите ближайшее целое число. ![]()
Задачу решили:
27
всего попыток:
30
Последовательность {xi, i є N} действительных чисел задана формулой xn+1 = 2*xn + (3*xn2 + 3)1/2. Известно, что х2018 + х2022 = 3822. Найдите х2020. ![]()
Задачу решили:
21
всего попыток:
23
В стозначном числе 12345678901234567890…1234567890 вычеркнули все цифры на четных местах. В полученном пятидесятизначном числе снова вычеркнули все цифры на четных местах. Такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра а. А если в том же стозначном числе вычеркнули все цифры на нечетных местах, и в полученном пятидесятизначном числе снова вычеркнули все цифры также на нечетных местах, и такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра b. В ответ введите двузначное число 10а + b. ![]()
Задачу решили:
16
всего попыток:
20
Рассматривается геометрическое место точек (ГМТ) М внутри треугольника АВС, что каждый из треугольников МАВ, МВС и МСА имеет площадь не меньше 1/2. Найдите площадь этого ГМТ, если стороны АВ, ВС и СА равны 5, 4 и 3 соответственно. ![]()
Задачу решили:
9
всего попыток:
10
Пусть величины a, b и c являются длинами сторон некоторого треугольника, а величины U и V определены на a, b и c следующим образом: Чему равно sign(U/V-1), где функция sign(x) равна 1, если x>0; равна 0, если x=0 и равна -1, если x<0. ![]()
Задачу решили:
14
всего попыток:
16
Пусть x є R, y є R, таковы, что x = y*(3 – y)2 и y = x*(3 – x)2. Найдите все возможные суммы (x + y), а также целые части от выражений (x + y + ½), то есть, величины [x + y + ½], где квадратные скобки обозначают функцию целой части. В ответе укажите сумму всех полученных чисел [x + y + ½], соответствующих всем решениям исходной системы. Например, если бы величина [x + y + ½] принимала только следующие значения, и только с указанной кратностью: 0; 6 (кратность 2); 7; 9; 13 (кратность 2) и 27, то ответ был бы равен 81 (причем, в данном примере двукратные величины 6 и 13 повторяются).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|