img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 22
всего попыток: 32
Задача опубликована: 22.09.21 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

В треугольнике три стороны составляют арифметическую прогрессию, а центр описанной окружности лежит на вписанной окружности. Найдите шаг прогрессии, если средняя по длине сторона равна 430. Ответ округлите до целого числа.

Задачу решили: 11
всего попыток: 94
Задача опубликована: 20.10.21 08:00
Прислал: user033 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Дан выпуклый четырехугольник ABCD, в котором проведены диагонали, пересекающиеся в точке K. При этом длины всех восьми полученных отрезков AB, BC, CD, AD, AK, BK, CK, DK это различные целые числа. Найдите сумму длин этих отрезков для четырехугольника с наименьшей площадью.

Задачу решили: 19
всего попыток: 25
Задача опубликована: 21.11.22 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: aaa_uz
Дана функциональная последовательность fn(x):
f0(x) = 0;
fn+1(x) = (x+fn(x)) / (x*(x+ fn(x))+1).
Найти предельную функцию g(x) при n стремящемся к бесконечности.
В ответе введите значение: 29*g(2) - g(82)
Задачу решили: 21
всего попыток: 40
Задача опубликована: 30.11.22 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Дана бесконечная последовательность натуральных чисел a0, a1, a2 … an
an+1 = √anесли an является квадратом натурального числа, 
an+1 = an + 3 в остальных случаях
Найти все возможные значения a0, которые встречаются в последовательности более одного раза. В ответе введите сумму всех таких a0.

Задачу решили: 11
всего попыток: 16
Задача опубликована: 10.04.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В выпуклом четырехугольнике с целочисленными сторонами два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. При этом НОД любых трех неравных между собой сторон равен 1. Найдите минимальное значение площади, которым обладают как минимум два таких неконгруэнтных четырехугольника.

Задачу решили: 12
всего попыток: 19
Задача опубликована: 26.05.23 08:00
Прислал: user033 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Внутри треугольника ABC выбрана точка из которой проведены отрезки к каждому из углов треугольника. В результате исходный треугольник разбился на три неконгруэнтных треугольника с целочисленными сторонами. Найдите минимально возможную площадь треугольника ABC. В ответе введите квадрат этой площади.

Задачу решили: 18
всего попыток: 26
Задача опубликована: 12.07.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VVSH (Василий Шедько)

Все стороны и медианы треугольника являются различными натуральными числами. Найдите минимально возможный периметр такого треугольника.

Задачу решили: 19
всего попыток: 33
Задача опубликована: 16.08.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

На экзамене два преподавателя принимают экзамен у студентов. Один принимает только теорию, а второй только практику. Время затрачиваемое каждым преподавателем на прием теории, либо практики одинаковое. Через равные промежутки в аудиторию заходят по два студента, сдают экзамен (один из них теорию, второй практику), потом уходят, заходят следующие так далее. Т.е. каждый студент должен зайти в аудиторию два раза. Перед экзаменом студенты случайным образом разыгрывают между собой номера в очереди к каждому преподавателям. Найдите вероятность того, что полученное таким образом расписание для 8 студентов не сможет быть выполнено.

Задачу решили: 21
всего попыток: 49
Задача опубликована: 25.08.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: old

При последовательном подбрасывании монеты, после каждого броска сравнивают количество ранее выпавших орлов и решек и подсчитывают сколько раз эти количества совпадали. Например, если монета выпадала так: ОРОРРРР (О - орел, Р - решка), то количество таких совпадений равно 2, а если РРРРОРОР, то количество совпадений равно 0. Пусть n - это количество бросков монеты, а F(n) это среднее количество совпадений (или математическое ожидание количества совпадений).

Тогда:

F(1) = 0/2 = 0,
F(2) = 2/4 = 0.5
F(3) = 4/8= 0.5
F(4) = 14/16= 0.875
Найдите минимальное n при котором F(n) будет больше или равно 3
 
Задачу решили: 18
всего попыток: 30
Задача опубликована: 25.09.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Kf_GoldFish

Касательно по внешнему контуру синей окружности располагаются одинаковые красные окружности. Которые в свою очередь касаются по внутреннему контуру зеленой окружности. Каждая красная окружность также касается двух соседних красных окружностей. На рисунке изображен пример для 4 красных окружностей.

Подшипник

Пусть N - это минимальное количество красных окружностей, при котором их суммарная площадь будет меньше площади синей окружности.

Пусть M - это минимальное количество красных окружностей при котором их удвоенная суммарная площадь будет меньше площади зеленой окружности.

Найдите N+M.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.