img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 16
Задача опубликована: 10.04.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В выпуклом четырехугольнике с целочисленными сторонами два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. При этом НОД любых трех неравных между собой сторон равен 1. Найдите минимальное значение площади, которым обладают как минимум два таких неконгруэнтных четырехугольника.

Задачу решили: 19
всего попыток: 33
Задача опубликована: 16.08.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

На экзамене два преподавателя принимают экзамен у студентов. Один принимает только теорию, а второй только практику. Время затрачиваемое каждым преподавателем на прием теории, либо практики одинаковое. Через равные промежутки в аудиторию заходят по два студента, сдают экзамен (один из них теорию, второй практику), потом уходят, заходят следующие так далее. Т.е. каждый студент должен зайти в аудиторию два раза. Перед экзаменом студенты случайным образом разыгрывают между собой номера в очереди к каждому преподавателям. Найдите вероятность того, что полученное таким образом расписание для 8 студентов не сможет быть выполнено.

Задачу решили: 21
всего попыток: 49
Задача опубликована: 25.08.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: old

При последовательном подбрасывании монеты, после каждого броска сравнивают количество ранее выпавших орлов и решек и подсчитывают сколько раз эти количества совпадали. Например, если монета выпадала так: ОРОРРРР (О - орел, Р - решка), то количество таких совпадений равно 2, а если РРРРОРОР, то количество совпадений равно 0. Пусть n - это количество бросков монеты, а F(n) это среднее количество совпадений (или математическое ожидание количества совпадений).

Тогда:

F(1) = 0/2 = 0,
F(2) = 2/4 = 0.5
F(3) = 4/8= 0.5
F(4) = 14/16= 0.875
Найдите минимальное n при котором F(n) будет больше или равно 3
 
Задачу решили: 10
всего попыток: 18
Задача опубликована: 26.01.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

У Васи есть три предмета:

1. Монета

2. Игральная кость на каждой стороне которой написаны различные гласные буквы английского алфавита: 'AEIOUY'

3. Икосаэдр, на каждой грани которого написаны различные согласные буквы английского алфавита: 'BCDFGHJKLMNPQRSTVWXZ'

Вася кидает монету и:

- если выпадает орел, то он бросает игральную кость и выписывает выпавшую  букву на доску;

- если выпадает решка, то он бросает икосаэдр и выписывает выпавшую букву на доску.

Так он продолжает делать, пока полученная последовательность букв не будет заканчиваться словом 'ABBA'. Сколько раз (в среднем) Василию придется бросить монетку?

Задачу решили: 11
всего попыток: 18
Задача опубликована: 22.05.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В мешке есть шары 3 различных цветов. Поочередно берут один шар, смотрят на его цвет и кладут обратно в мешок.

Оказалось, для того чтобы вынуть хотя-бы раз шар каждого цвета, требуется в среднем 937/105 попыток.

Какое минимальное количество шаров может быть в мешке?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.