img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 30
Задача опубликована: 25.09.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Kf_GoldFish

Касательно по внешнему контуру синей окружности располагаются одинаковые красные окружности. Которые в свою очередь касаются по внутреннему контуру зеленой окружности. Каждая красная окружность также касается двух соседних красных окружностей. На рисунке изображен пример для 4 красных окружностей.

Подшипник

Пусть N - это минимальное количество красных окружностей, при котором их суммарная площадь будет меньше площади синей окружности.

Пусть M - это минимальное количество красных окружностей при котором их удвоенная суммарная площадь будет меньше площади зеленой окружности.

Найдите N+M.

Задачу решили: 13
всего попыток: 29
Задача опубликована: 17.05.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Lec

В прямоугольник с целочисленными взаимно простыми длинами сторон вписан прямоугольник с различными целочисленными сторонами так, что все его углы лежат на различных сторонах исходного четырехугольника. Одна из сторон вписанного четырехугольника в 2 раза меньше одной из сторон исходного. Минимально возможный (по площади) такой четырехугольник имеет размеры 10x11 со вписанным четырехугольником 5х10. Найдите вторую минимально возможную площадь исходного четырехугольника.

Задачу решили: 14
всего попыток: 42
Задача опубликована: 03.07.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: геометрияimg

Одни и те же четыре фигуры – два треуольника и два полиомино – складываются двумя способами в виде "большого треугольника", по такому принципу:

1. Все вершины фигур лежат в узлах квадратной сетки.
2. Исходные треугольники касаются острыми углами.
3. В одном случае два полиомино заполняют некоторый прямоугольник, а во втором случае – другой прямоугольник, в котором – о чудо! – оказывается ещё одна лишняя клетка.

Лишняя клетка

На самом деле, "большой треугольник" здесь иллюзорен. Угол AKB в одном случае чуть меньше, а в другом чуть больше 180 градусов на одинаковую величину.
Можно повторить тот же фокус и с другой четвёркой фигур – парой треугольников и парой полиомино, складывая их в "большой треугольник" двумя способами по этому же принципу.
В данном примере площадь треугольника ABC (если предположить, что AB это не ломаная, а отрезок) равна 32,5.
Найдите четвёрку таких фигур с минимальной площадью треугольника ABC ("выпрямленного"), при которой абсолютная величина отклонения угла AKB от 180 градусов будет меньше чем в исходном примере. В ответе введите  эту площадь.
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.