img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 44
Задача опубликована: 28.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В остроугольном треугольнике ABC высоты BD и CE пересекаются в точке H, точка M --- середина AH. Через точки A и H провели окружность, центр O которой лежит вне треугольника ABC. Окружность пересекается с прямой AC$ в точке P. Известно, что углы MED и APO равны, |AB| = 200, |AD| = 40, |AP| = 96√6. Найдите длину отрезка OP.

Задачу решили: 42
всего попыток: 74
Задача опубликована: 03.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из букв A, B, C, D составляют слова длины 8, так чтобы к каждой букве А справа примыкала буква B, а к каждой букве B слева примыкала буква A, например DABABDAB и DDCCDCCD. Cколько различных слов можно составить?

Задачу решили: 35
всего попыток: 91
Задача опубликована: 05.03.14 14:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: sacred_shaved_... (Никита Гладков)

Найдите наименьшее и наибольшее k, такое что существуют состоящие из k различных целых чисел множества A и B со следующим свойством: всевозможные суммы пар элементов, один из которых берется из множества A, а второй из множества B, образуют множество {0,1,2, ..., 100}. В ответе укажите сумму найденных значений.

Задачу решили: 48
всего попыток: 129
Задача опубликована: 07.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

n = 3 × 77. Найдите наибольший общий делитель 7n - 1 и 7n + 4949.

Задачу решили: 38
всего попыток: 41
Задача опубликована: 14.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

В остроугольном треугольнике ABC на стороне BC как на диаметре построили окружность O. Через точку P на стороне AB перпендикулярно AB провели прямую, пересекающую AC в точке Q, причем |AP| = 10 и площадь треугольника APQ в 4 раза меньше площади треугольника ABC. Найдите длину отрезка касательной AT, проведенной из точки A к окружности O.

Задачу решили: 57
всего попыток: 139
Задача опубликована: 21.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Действительные числа a, b, c удовлетворяют условию ab + bc + ac = 7(a + b + c) - 30. Найдите минимум выражения a2 + b2 + c2.

Задачу решили: 36
всего попыток: 112
Задача опубликована: 26.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Из 20 сидящих за круглым столом людей выбирают 8. Найдите количество способов сделать это так, чтобы никакие двое выбранных не сидели рядом.

Задачу решили: 24
всего попыток: 61
Задача опубликована: 02.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Внутри выпуклого 5-угольника A1A2A3A4A5 расположена точка O, причем равны следующие углы:
A1A2O = OA3A4, A2A3O = OA4A5, A3A4O = OA5A1, A4A5O = OA1A2, A5A1O = OA2A3.
Из точки O на стороны A1A2, A2A3, A3A4, A4A5, A5A1
опущены высоты с основаниями B1, B2, B3, B4, B5 соответственно,
|B1B2| = 8, |B2B3| + |B3B4| + |B4B5| + |B5B1| = 30.
Найдите площадь 5-угольника B1B2B3B4B5, если площадь треугольника OB1B2 равна 20.

Задачу решили: 40
всего попыток: 93
Задача опубликована: 04.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Положительные действительные числа a и b удовлетворяют условию
a2 + b2 = (ab + 1) (a + b - 1).
Обозначим минимум и максимум выражения 2ab/(a + b - 1) за m и M. Найдите m2 + M2.

Задачу решили: 32
всего попыток: 152
Задача опубликована: 07.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите количество всевозможных пар подмножеств множества A = {1,2, ..., 6}, для которых выполняется следующее условие: объединение этой пары дает множество A, а пересечение содержит не менее двух элементов.

Подмножества в паре различны, порядок не учитывается.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.