img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 281
Задача опубликована: 03.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Angelina

Пусть f(x) = x^2 -10x + \frac{p}{2}. Найдите такое натуральное p, что уравнение f \circ f \circ f (x) = f(x) имеет ровно 4 различных действительных решения.

Задачу решили: 27
всего попыток: 100
Задача опубликована: 10.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество инъективных функций f \colon \{1,2,\ldots, 7\} \to \{1,2,\ldots,9\}, обладающих следующим свойством:

f(i) \ne f(j) + 1 для всех 1 \le i < j \le 7.

Задачу решили: 65
всего попыток: 105
Задача опубликована: 19.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Для натуральных чисел a, b, c справедливо равенство


\cfrac{a^3}{(b + 3)(c + 3)} + 
\cfrac{b^3}{(c + 3)(a + 3)} + 
\cfrac{c^3}{(a + 3)(b + 3)} = 7.

 

Найдите значение a + b + c.

Задачу решили: 51
всего попыток: 123
Задача опубликована: 22.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: pvpsaba (Saba Dzmanashvili)

Найдите наименьшее натуральное m, для которого следующее выражение является целым числом:

180! \left( \cfrac{1}{181} + \cfrac{(-1)^m m!}{m + 181} \right) + 
\cfrac{1}{181} + \cfrac{1}{m + 181}.

 

Задачу решили: 46
всего попыток: 61
Задача опубликована: 29.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Последовательность целых чисел \{a_n\} такова, что a_1 = 1, a_2 = 2, и для некоторого натурального k выполняется


a_{n+k} = a_n, \quad n = 1, 2, \ldots

Также известно, что последовательность b_n = a_{n+2} - a_{n+1} + a_n обладает следующим свойством

b_{n+1} = \cfrac{1 + b_n^2}{2},\quad n = 1, 2, \ldots

Найдите значение \sum \limits_{n = 1} ^{60} a_n.

Задачу решили: 29
всего попыток: 35
Задача опубликована: 05.11.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Angelina

Вне окружности \omega с центром O выбрана точка P. Из точек пересечения прямой PO и окружности \omega, дальнюю от P точку обозначим за A, AP = 200. Через точку P проведена прямая l (не проходящая через O), пересекающая \omega в точках B и C, ближней и дальней от P соответственно. Описанная окружность треугольника ABO пересекается с l в точке D(\ne B), а описанная окружность треугольника ACO пересекается с l в точке E(\ne C), причем E лежит между точками B и C, AD = 250, AE = 90. Найдите радиус окружности \omega.

Задачу решили: 73
всего попыток: 100
Задача опубликована: 27.12.13 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В треугольнике ABC провели биссектрису СD. Прямая, параллельная CD и проходящая и через точку B, пересекает продолжение AC в точке E. Известно, что |AD| = 4, |BD| = 6, |BE| = 15. Найдите |BC|2.

Задачу решили: 101
всего попыток: 122
Задача опубликована: 20.01.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Среди чисел, записываемых только нулями и единицами, найдите наименьшее кратное 14.

Задачу решили: 52
всего попыток: 87
Задача опубликована: 22.01.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.

Задачу решили: 62
всего попыток: 108
Задача опубликована: 07.02.14 08:00
Прислал: Dremov_Victor img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Для действительных чисел x, y выполнено условие

|x + y + 1| + |x + 1| + |y + 3| = 3.

Обозначим за M наибольшее, а за m наименьшее значение, которое может принимать выражение x2 + y2.

Найдите M + 2m.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.