img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Плохое место" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 65
всего попыток: 121
Задача опубликована: 27.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство:

K <
\frac{a_1}{a_1 + a_2} + 
\frac{a_2}{a_2 + a_3} + \cdots
\frac{a_n}{a_n + a_1} <
G

Чему равно K+G для n = 100.

 

Задачу решили: 41
всего попыток: 59
Задача опубликована: 30.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

В последовательности x_1, x_2, \ldots, x_{10} четыре единицы, три двойки и три тройки. Пусть z_1 = x_1 иz_{n+1} = \left(1 + \frac{1}{n}\right)^2 \cdot 
\cfrac{z_n x_{n+1}}{z_n + x_{n + 1}}, \quad n = 1, 2, \ldots, 9.

Найдите наибольшее значение z_{10}.

(Ответ дробный)
Задачу решили: 33
всего попыток: 424
Задача опубликована: 01.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Дано множество X = \{ 1, 2, \ldots, 13 \}. Определим функцию g\colon X \to X следующим образом:
g(x) = 14 - x,\quad x \in X.
Найдите количество функций f\colon X \to X, для которых композиция f \circ f \circ f равна g.

Задачу решили: 65
всего попыток: 176
Задача опубликована: 03.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Найдите количество упорядоченных пар целых чисел (x,y), удовлетворяющих условию 
4x^3 - 5x^2y + 10xy^2 + 12y^3 - 108x - 81y = 0,
и таких, что x и y по модулю не превосходят 1000.

Задачу решили: 43
всего попыток: 281
Задача опубликована: 03.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Angelina

Пусть f(x) = x^2 -10x + \frac{p}{2}. Найдите такое натуральное p, что уравнение f \circ f \circ f (x) = f(x) имеет ровно 4 различных действительных решения.

Задачу решили: 65
всего попыток: 105
Задача опубликована: 19.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Для натуральных чисел a, b, c справедливо равенство


\cfrac{a^3}{(b + 3)(c + 3)} + 
\cfrac{b^3}{(c + 3)(a + 3)} + 
\cfrac{c^3}{(a + 3)(b + 3)} = 7.

 

Найдите значение a + b + c.

Задачу решили: 46
всего попыток: 61
Задача опубликована: 29.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Последовательность целых чисел \{a_n\} такова, что a_1 = 1, a_2 = 2, и для некоторого натурального k выполняется


a_{n+k} = a_n, \quad n = 1, 2, \ldots

Также известно, что последовательность b_n = a_{n+2} - a_{n+1} + a_n обладает следующим свойством

b_{n+1} = \cfrac{1 + b_n^2}{2},\quad n = 1, 2, \ldots

Найдите значение \sum \limits_{n = 1} ^{60} a_n.

Задачу решили: 62
всего попыток: 108
Задача опубликована: 07.02.14 08:00
Прислал: Dremov_Victor img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Для действительных чисел x, y выполнено условие

|x + y + 1| + |x + 1| + |y + 3| = 3.

Обозначим за M наибольшее, а за m наименьшее значение, которое может принимать выражение x2 + y2.

Найдите M + 2m.

Задачу решили: 54
всего попыток: 74
Задача опубликована: 19.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что действительные числа a и b удовлетворяют уравнению
a2 + 200ab + 10000 = 0.
Найдите наибольшее значение (a + 100) / (b + 1).

Задачу решили: 57
всего попыток: 139
Задача опубликована: 21.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Действительные числа a, b, c удовлетворяют условию ab + bc + ac = 7(a + b + c) - 30. Найдите минимум выражения a2 + b2 + c2.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.