Лента событий:
DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
78
всего попыток:
173
Пусть N! обозначает число равное произведению всех чисел от 1 до N. Будем считать, что 0!=1. Удалим из ряда натуральных чисел все числа у которых сумма факториалов их цифр не равна 111. Последним оставшимся числом будет число состоящее из 111 единиц. А чему равна сумма двух первых оставшихся чисел?
Задачу решили:
10
всего попыток:
40
В шахматах существуют такие расстановки фигур, что любой игрок, при своём ходе, может поставить мат в 1 ход. Нас интересуют расстановки, обладающие этим свойством, с наименьшим количеством фигур на доске. В ответе укажите количество таких различных расстановок.
Задачу решили:
57
всего попыток:
94
Если шахматному коню запретить дважды вставать на одно и тоже поле, то можно найти такое начальное положение коня, что через три хода он будет запатован (у него не будет возможных ходов). Например, поместим коня на поле f2, тогда после ходов 1.Ke4 2.Kg3 3.Kh1 - конь запатован. А можно ли запатовать коня на бесконечной шахматной доске? В ответе укажите минимальное достаточное количество ходов для достижения цели.
Задачу решили:
45
всего попыток:
302
Петя с Васей изучили правила игры в шахматы и стали часто играть между собой. В одной из сыгранных партий у них случилась позиция, в которой присутствовали только короли, ладьи и слоны. А какое максимальное общее количество фигур могло быть на доске в этот момент.
Задачу решили:
66
всего попыток:
203
Все нечётные числа кратные 99 и в записи которых могут присутствовать только цифры 0, 1 и 2, выписаны в порядке возрастания. Найдите шестое число полученного ряда.
Задачу решили:
45
всего попыток:
285
Вася старается раскрасить клетки квадрата 5х5 так, чтобы в любом его квадрате 3х3 было ровно 4 закрашенных клетки. После успешной раскраски он считает сколько клеток осталось не закрашенными. Сколько различных значений может получить Вася? В качестве ответа введите сумму полученных значений.
Задачу решили:
42
всего попыток:
277
Про натуральное число, в десятичной записи которого все цифры различны, известно, что произведение нескольких подряд стоящих начальных цифр равно произведению остальных его цифр. Найти количество чисел с таким свойством.
Задачу решили:
24
всего попыток:
344
Внутреннюю точку выпуклого четырёхугольника соединили с серединами всех его сторон. Четырёхугольник разделился на четыре четырёхугольника. Два из них имеют площади 311 и 183. Какую минимальную целочисленную площадь мог иметь исходный четырёхугольник?
Задачу решили:
27
всего попыток:
276
Дано, выпуклый четырёхугольник ABCD имеет целочисленную площадь, а длины его сторон AB, BC, CD, DA равны 11, 5, 10, 14, соответственно. Сколько различных значений может принимать площадь таких четырёхугольников?
Задачу решили:
33
всего попыток:
171
Петя пишет на доске 4 произвольных простых числа, а Вася, видя эти числа, пишет 4 различных составных числа таких, что их произведение в 1000 раз больше произведения Петиных чисел, а сумма по возможности минимальна. Какая минимальная сумма Васиных чисел может получиться в этой игре?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|