Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
52
всего попыток:
66
Две окружности разных радиусов, расположены так, что центр меньшей находится на большей окружности, как на рисунке. Известно, что длина отрезка BD равна длине BC. Точка A - центр большей окружности. Найти длину отрезка AD, если радиусы окружностей равны 5 и 3.
Задачу решили:
13
всего попыток:
17
В ряду 111 ... 111 записаны 2018 единиц. Какое наибольшее количество знаков "+" или "-" можно поставить в этом ряду (не более одного знака между каждой группой единиц), чтобы полученное выражение давало в итоге 8102?
Задачу решили:
34
всего попыток:
63
Расположим в порядке возрастания все стозначные числа, у которых сумма цифр равна их произведению. Какое число окажется на 13-м месте? В качестве ответа введите последние четыре младшие цифры найденного числа.
Задачу решили:
11
всего попыток:
34
Квадрат 8×8 без двух угловых клеток требуется разрезать на минимальное количество частей, из которых можно собирать квадраты с двумя отсутствующими клетками во всех возможных местах, при этом части разрешается поворачивать и переворачивать. В ответе укажите количество частей, а в решении - их расположение на приведённой фигуре.
Задачу решили:
23
всего попыток:
89
Внутри равностороннего треугольника, включая и его стороны, выбрана произвольная точка. Из отрезков равных расстоянию от этой точки до вершин треугольника составляется новый треугольник. Сколько различных целочисленных значений в градусах может принимать наибольший угол нового треугольника?
Задачу решили:
26
всего попыток:
34
Требуется сшить ковёр размерои 3х3 метра. Для этого можно использовать лоскуты материи размерами 0.5х0.5 метра и 0.5х1 метр в любом количестве, при условии, что сшитый ковёр не имеет прямых швов от края до края ковра. Два ковра считаются разными, если в них использовано разное количество лоскутов (независимо от их расположения). Сколько разных ковров можно изготовить в этих условиях?
Задачу решили:
14
всего попыток:
19
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. На рисунке приведен (для иллюстрации) равносторонний треугольник со стороной 7, в который вписаны 6 меньших равносторонних треугольников. Обозначим: Tk – количество внутренних точек пересечения отрезков (сторон вписанных треугольников), через которые проходят ровно k отрезков. Найдите количество частей, на которые разделён исходный треугольник, если известно, что T2 = 2996676, T3 = 72 и T4 = 18.
Задачу решили:
12
всего попыток:
13
Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.
Задачу решили:
14
всего попыток:
19
Найти 2 первых 24-значных натуральных квадратных числа, запись которых в десятичной системе счисления, состоит из двух последовательных 12-значных чисел написанных одно за другим. В качестве ответа ввести сумму найденных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|