img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 24
всего попыток: 59
Задача опубликована: 01.09.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

На рисунке изображены правильный 6-угольник со стороной 7 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседними звеньями – 60°.

Шестиугольник и ломанная - 2

Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника.

Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев.

Найдите минимально возможное количество звеньев.

Замечание. Задача кажется очень похожей на задачу № 2215, но на самом деле это не совсем так. Вместе с тем, дальнейшее продолжение "сериала" не планируется.

(Я задумал эти две задачи как забавы ("головоломки") типа разрезания-склеивания. Но zmerch показал очень приличный АЛГОРИТМ их решения, и я решил "поднять их ранг".)
Задачу решили: 23
всего попыток: 106
Задача опубликована: 24.09.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков:

Самый длинный маршрут козлотура

Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте.

Задачу решили: 14
всего попыток: 41
Задача опубликована: 18.04.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Вова играл против компьютера в NIM. В какой-то момент он понял принцип работы компьютера! В частности, он понял, что следующая позиция – проигрышная:

Позиция П:
Первая куча – 1 спичка
Вторая куча – 3 спички.
Третья куча – 5 спичек.
Четвёртая куча – 7 спичек.

И тут, заметив, что компьютер играет как-то однобоко – делает выигрывающий ход именно с первой же кучей, с которой это возможно (номера куч остаются всё время неизменными), придумал себе забаву.

Один ход человека заключался в нажатии мышью на те спички, которые он удаляет. Например, если он хочет удалить 4 спички из какой-то кучи, то он поочерёдно нажимает на 4 спички в этой куче.

Так вот, Вова, зная, что, получив позицию П он проиграет, хочет минимизировать количество своих нажатий с этой позиции до конца игры. Чему равен этот минимум?

Его товарищ Вася, будучи в курсе всех этих дел, придумал себе противоположную забаву: как из той же позиции П максимизировать общее количество своих нажатий до конца игры.

Чему равен этот максимум?

Введите в ответе произведение этих двух чисел – минимум Вовы и максимум Васи.

Задачу решили: 16
всего попыток: 29
Задача опубликована: 11.05.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

На столе расположены 2022 кучи спичек. Кучи пронумерованы: 1, 2, 3,... , 2022. В каждой k-й куче по k спичек.

Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола.

Сколько вариантов выигрывающего первого хода есть у начинающего?

Задачу решили: 19
всего попыток: 31
Задача опубликована: 13.05.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

На столе расположена 2021 куча спичек. Кучи пронумерованы: 1, 2, 3,... , 2021. В каждой k-й куче по k спичек.

Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола.

Сколько вариантов выигрывающего первого хода есть у начинающего?

Задачу решили: 18
всего попыток: 32
Задача опубликована: 07.07.23 08:00
Прислал: TALMON img
Источник: По мотивам задачи 505
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: логикаimg
Лучшее решение: user033 (Олег Сopoкин)

В четыре стакана налито 2 мл, 5 мл, 15 мл, 11 мл воды.

Разрешена такая операция: удвоение количества воды в стакане путём переливания из другого стакана (содержащего достаточное для этого количество воды).

За какое минимальное количество операций можно опустошить два стакана?

[Решения проверяются в ручном режиме. Укажите в решении, какие конкретные переливания предлагаете. Доказательство минимальности не обязательно.]

Задачу решили: 8
всего попыток: 53
Задача опубликована: 15.03.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино?

Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта

Три пентамино

считается только один раз.

Задачу решили: 12
всего попыток: 39
Задача опубликована: 22.04.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Какую центрально-симметричную фигуру можно сложить из трёх произвольных различных пентамино наибольшим количеством способов?

Введите в ответе это количество.

Задачу решили: 9
всего попыток: 40
Задача опубликована: 13.05.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Укажите количество центрально-симметричных фигур, каждую из которых можно сложить не меньше, чем двумя способами из одних и тех же трёх различных пентамино.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.