img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 16
всего попыток: 38
Задача опубликована: 02.03.22 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2295
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько попарно неконгруэнтных правильных шестиугольников определяют эти точки?

Задачу решили: 22
всего попыток: 29
Задача опубликована: 20.07.22 08:00
Прислал: TALMON img
Источник: Идея обобщить задачу для любого количества сл...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите максимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется:

0 < a < b < c < d < e < f < g

и

1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.

Задачу решили: 22
всего попыток: 26
Задача опубликована: 29.07.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение:
((a+b+c)/2)2 - 3r2 - 12Rr, можно представить как многочлен от трёх переменных a, b, c.

Обозначим:
B - произведение коэффициентов этого многочлена.
A - сумма абсолютных величин этих же коэффициентов.
Найдите A+B.

Задачу решили: 12
всего попыток: 21
Задача опубликована: 29.12.22 00:08
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: solomon

Множество A={a,b,c} содержит 3 элемента. Его запись занимает 7 символов.

Множество B это множество всех подмножеств множества A. Его запись: {{},{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}} занимает 42 символа.

Множество C это множество всех подмножеств множества B. Сколько символов занимает запись множества C?

Задачу решили: 11
всего попыток: 18
Задача опубликована: 01.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите f(2³×3³×5³×7³×11³×13³).

Задачу решили: 8
всего попыток: 13
Задача опубликована: 20.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.

Задачу решили: 9
всего попыток: 10
Задача опубликована: 22.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.

Задачу решили: 7
всего попыток: 15
Задача опубликована: 05.04.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Определим g(m) как наименьшее натуральное число, которое встречается ровно в m пифагоровых тройках. Например, g(1)=3 и g(2)=5, т.к. числа 1 и 2 не встречаются ни в одной пифагоровой тройке, каждое из чисел 3 и 4 встречается ровно в одной пифагоровой тройке, а число 5 – ровно в двух:
32 + 42 = 52
52 + 122 = 132

Найдите наименьшее натуральное число m, для которого g(m)>12345.

Задачу решили: 25
всего попыток: 63
Задача опубликована: 09.08.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?

Задачу решили: 21
всего попыток: 28
Задача опубликована: 27.09.23 08:00
Прислал: TALMON img
Источник: Ибн Альберт
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

В день своего 18-летия Таня нарисовала выпуклый 18-угольник, каждый угол которого кратен 18 градусам.
Какими могут быть углы Таниного многоугольника (порядок углов не важен)? Укажите все возможные варианты и докажите, что других нет. В ответе укажите количество вариантов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.