Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
152
всего попыток:
211
Треугольник ABC - равнобедренный: AB = AC. На стороне BC, длина которой равна 43, находится точка D. Дано: AD = 17 CD = 13 Найдите, чему равен угол ADC в градусах.
Задачу решили:
32
всего попыток:
72
Найти количество целых чисел n (1 ≤ n ≤ 300) для которых существует многочлен степени n с целыми коэффициентами, коэффициентом при xn равен 1, а его значение при любых целых значениях x, не делится на n.
Задачу решили:
71
всего попыток:
91
Диагонали трапеции делят её на четыре треугольника. Площади треугольников, прилегающих к основаниям, равны 50 и 32. Найдите площадь трапеции.
Задачу решили:
46
всего попыток:
63
Сторона треугольника равна 53. Растояние от центра окружности, описанной около этого треугольника, до этой стороны равно 37. Чему равна сумма всех возможных значений угла, противоположного этой стороне, в градусах?
Задачу решили:
54
всего попыток:
81
В равнобедренный треугольник вписана окружность, радиус которой равен 12. Ещё одна окружность, радиус которой равен 3, касается первой окружности и двух боковых сторон исходного треугольника. Найти периметр треугольника?
Задачу решили:
47
всего попыток:
60
Число 14 представили в виде суммы положительных чисел и перемножили слагаемые. Какое максимальное произведение могло получиться?
Задачу решили:
24
всего попыток:
78
Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.
Задачу решили:
24
всего попыток:
56
Сколькими способами можно расположить 4 точки на плоскости таким образом, что все расстояния между любыми двумя имели ровно два различных значения?
Задачу решили:
22
всего попыток:
52
Известно, что для каких-то 4-х точек на плоскости существует конечное количество окружностей, от которых они равноудалены. Найдите максимальное возможное значение этого количества.
Задачу решили:
29
всего попыток:
35
На рисунке указаны длины звеньев ломаной в правильном шестиугольнике. Длина гипотенузы AC прямоугольного треугольника ABC представима в виде x + y*√3, где x и y – рациональные числа. Найдите сумму x+y.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|