Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
341
всего попыток:
379
Два велосипедиста одновременно стартовали на двух разных, но пересекающихся дорогах. Оба едут с постоянной скоростью 10 км/ч в сторону перекрёстка, где их дороги пересекаются. В момент старта один из велосипедистов находился на расстоянии 50 км от перекрёстка, а другой — на расстоянии 30 км от перекрёстка. Через сколько часов после старта оба велосипедиста будут на одинаковом расстоянии от перекрёстка?
Задачу решили:
135
всего попыток:
184
Два друга гуляли по парку. Все дорожки в парке — концентрические окружности и "радиусы" — отрезки, соединяющие некоторые точки самой внешней окружности с центром. Находясь как раз у одной из точек пересечения окружности с "радиусом", они вдруг подумали: — А интересно, какой путь короче: если идти сейчас по "радиусу" до более маленькой окружности, по ней идти до следующего "радиуса" и вернутся по нему к нашей окружности (этот путь изображён на рисунке зелённым цветом), или просто продолжить путь по нашей окружности до той же точки (на рисунке: красный цвет)? Решили попробовать, разделились, пошли с одинаковой скоростью этими двумя разными путями и... пришли к точке встречи одновременно! Чему равен угол между этими двумя "радиусами"?
Задачу решили:
22
всего попыток:
23
Докажите, что для любого натурального числа существует такое его кратное, в десятичной записи которого используется не более двух различных цифр.
Задачу решили:
29
всего попыток:
35
На рисунке указаны длины звеньев ломаной в правильном шестиугольнике. Длина гипотенузы AC прямоугольного треугольника ABC представима в виде x + y*√3, где x и y – рациональные числа. Найдите сумму x+y.
Задачу решили:
25
всего попыток:
48
На рисунке изображены правильный 6-угольник со стороной 6 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседными звеньями – 60° (см.рисунок). Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника. Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев. Найдите минимально возможное количество звеньев.
Задачу решили:
10
всего попыток:
14
Рассмотрим следующие 6 свободных полиомино: Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких. Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом: Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.
Задачу решили:
24
всего попыток:
59
На рисунке изображены правильный 6-угольник со стороной 7 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседними звеньями – 60°. Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника. Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев. Найдите минимально возможное количество звеньев. Замечание. Задача кажется очень похожей на задачу № 2215, но на самом деле это не совсем так. Вместе с тем, дальнейшее продолжение "сериала" не планируется.
(Я задумал эти две задачи как забавы ("головоломки") типа разрезания-склеивания. Но zmerch показал очень приличный АЛГОРИТМ их решения, и я решил "поднять их ранг".)
Задачу решили:
23
всего попыток:
106
На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков: Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте.
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
14
всего попыток:
16
Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»: Например: 16380 ⊕ 7 = [(16380+7) / 214] + (16380+7) mod 214 = 1 + 3 = 4 Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|