![]()
Лента событий:
fortpost решил задачу "Арифметическая прогрессия в хвосте квадрата - 2" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
32
Найдите количество примитивных пифагоровых троек с гипотенузой, равной 11508160625. ![]()
Задачу решили:
17
всего попыток:
55
Одна прямая разрезает один n-угольник на 10 треугольников. Найдите максимально возможное значение n. ![]()
Задачу решили:
12
всего попыток:
18
На иллюстрации изображенны точки с целочисленными координатами на эллипсе x2/452 + y2/302 = 1 и на гиперболе x2/452 - y2/302 = 1. На эллипсе их всего 12 штук: (±45, 0), (0, ±30), (±36, ±18), (±27, ±24). Найдите: б. Количество точек с целочисленными координатами на гиперболе x2/200002 – y2/64002 = 1.
![]()
Задачу решили:
10
всего попыток:
18
Рассмотрим выпуклые многоугольники, вершины которых имеют целые координаты, а стороны наклонены к оси X под углами, кратными 45-и градусам. Обозначим f(n) – количество таких различных (попарно не конгруэнтных) многоугольников, площадь которых равна n. Найдите произведение f(1) × f(2) × f(3) × f(4) × f(5). ![]()
Задачу решили:
13
всего попыток:
32
Рассмотрим треугольную сетку точек в виде равностороннего треугольника, на стороне которого находятся 8 точек: На следующем рисунке изображён пример фигуры, границей которой является замкнутая ломаная, обладающая следующими свойствами:
Фигура в этом примере состоит из 34-х маленьких треугольников. Найдите наибольшее количество маленьких треугольников, из которых может состоять фигура, граница которой является ломаная со всеми указанными свойствами, на треугольной сетке равностороннего треугольника с 15-ю точками на стороне. ![]()
Задачу решили:
13
всего попыток:
23
Рассмотрим треугольную сетку из 1+2+3+...+n точек, покрашенных в три цвета, расположенных в виде равностороннего треугольника с n точками на стороне. На рисунке изображён пример такой сетки при n=4. Сетка обладает таким свойством: ни одна тройка точек одного цвета не образует равносторонний треугольник. Найдите максимальный n, при котором это возможно. ![]()
Задачу решили:
11
всего попыток:
46
Рассмотрим открытый шар x2 + y2 + z2 < R2 и пересекающие его плоскости x=a, y=b, z=c, где a, b, c – все целые числа в пределах: |a|, |b|, |c| < R. На сколько частей эти плоскости делят шар, если R=6? ![]()
Задачу решили:
14
всего попыток:
51
Рассмотрим сферу x2 + y2 + z2 = R2 и пересекающие её плоскости x=a, y=b, z=c, где a, b, c – все целые числа в пределах: -R < a, b, c < R. На сколько частей эти плоскости делят сферу, если R=6 ? (Считаются только невырожденные части сферы). ![]()
Задачу решили:
5
всего попыток:
7
Фигура «Ёлочка» сложена из полного набора пентамино, как показано на рисунке, и украшена замкнутой гирляндой из 12 лампочек. Гирлянда является маршрутом козлотура, который, перескакивая по лампочкам "ходами козлотура" (см. рисунок), побывав ровно по одному разу в одной из клеток каждого пентамино, возвращается к исходной лампочке. Сколько всего существует таких замкнутых маршрутов козлотура? ![]()
Задачу решили:
4
всего попыток:
5
Рассмотрим квадратную сетку из 20×20 точек. Найдите количество различных (неконгруэнтных) замкнутых ломаных на этой сетке, обладающих следующими свойствами:
На рисунке изображён пример замкнутой ломаной, обладающей этими же свойствами, на квадратной сетке меньшего размера:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|