![]()
Лента событий:
fortpost решил задачу "Арифметическая прогрессия в хвосте квадрата - 2" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
21
Если существует взаимно однозначное соответствие между элементами двух множеств A и B, то говорят, что эти два множества имеют одинаковую мощность. Иначе, одно из них обязательно имеет одинаковую мощность с каким-то подмножеством другого множества. Тогда говорят, что первое множество имеет меньшую мощность, чем второе. Рассмотрим следующие множества:
Замечание. Здесь "буква Т" состоит из двух отрезков нулевой ширины, а "буква М" – из четырёх таких отрезков. Дополните следующую таблицу крестиками во всех клетках, стоящих на пересечении i-й строки и j-го ,столбца, если множества с номерами i и j имеют одинаковую мощность. Сколько всего крестиков окажется в таблице? ![]()
Задачу решили:
14
всего попыток:
16
a1, a2, a3, ..., a10 – действительные числа, хотя бы одно из которых не равно нулю. Σ2 = a12 + a22 + a32 + ... + a102 (т.е. сумма их квадратов) σ2 = a1a2 + a1a3 + a1a4 + ... + a9a10 (т.е. сумма произведений каждого с каждым) Найдите максимально возможное значение σ2/Σ2.
![]()
Задачу решили:
5
всего попыток:
12
Рассмотрим треугольную сетку из 1+2+3+...+n точек, расположенных в виде равностороннего треугольника с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один равносторонний треугольник (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9). ![]()
Задачу решили:
5
всего попыток:
7
Рассмотрим квадратную сетку из n2 точек, расположенных в виде квадрата с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один квадрат (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7). ![]()
Задачу решили:
16
всего попыток:
23
a1, a2, a3, ..., a10 – действительные числа, хотя бы одно из которых не равно нулю. Σ2 = a12 + a22 + a32 + ... + a102 (т.е. сумма их квадратов) σ2 = a1a2 + a1a3 + a1a4 + ... + a9a10 (т.е. сумма произведений каждого с каждым) Найдите минимально возможное значение σ2/Σ2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|