Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
14
всего попыток:
16
Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»: Например: 16380 ⊕ 7 = [(16380+7) / 214] + (16380+7) mod 214 = 1 + 3 = 4 Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.
Задачу решили:
20
всего попыток:
48
7 первых натуральных чисел, кратных 7-и, расположили в каком-то произвольном порядке в одну строку без пробелов, например так: 7142128354249. Соединив первую и последнюю цифры, получили замкнутую цепочку из 13-и цифр (смотрите рисунок). Затем разъединили какие-то две соседние цифры и снова натянули цепочку в одну строку. Получилось 13-значное число. На рисунке это число: 2835424971421. Какое наименьшее возможное число? Замечание: Наши цифры как игрушка «Ванька-встань-ка» - сколько бы их ни поворачивать, они всегда смотрят на нас вертикально.
Задачу решили:
8
всего попыток:
19
Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n. Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.
Задачу решили:
14
всего попыток:
41
Вова играл против компьютера в NIM. В какой-то момент он понял принцип работы компьютера! В частности, он понял, что следующая позиция – проигрышная: Позиция П: И тут, заметив, что компьютер играет как-то однобоко – делает выигрывающий ход именно с первой же кучей, с которой это возможно (номера куч остаются всё время неизменными), придумал себе забаву. Один ход человека заключался в нажатии мышью на те спички, которые он удаляет. Например, если он хочет удалить 4 спички из какой-то кучи, то он поочерёдно нажимает на 4 спички в этой куче. Так вот, Вова, зная, что, получив позицию П он проиграет, хочет минимизировать количество своих нажатий с этой позиции до конца игры. Чему равен этот минимум? Его товарищ Вася, будучи в курсе всех этих дел, придумал себе противоположную забаву: как из той же позиции П максимизировать общее количество своих нажатий до конца игры. Чему равен этот максимум? Введите в ответе произведение этих двух чисел – минимум Вовы и максимум Васи.
Задачу решили:
23
всего попыток:
30
В правильной треугольной призме ABCA’B’C’ на рёбрах AA’, BB’, CC’ отмечены соответственно точки A’’, B’’, C’’ так, что: Найдите соотношение объёма многогранника ABCA’’B’’C’’ к объёму призмы.
Задачу решили:
16
всего попыток:
29
На столе расположены 2022 кучи спичек. Кучи пронумерованы: 1, 2, 3,... , 2022. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Задачу решили:
19
всего попыток:
31
На столе расположена 2021 куча спичек. Кучи пронумерованы: 1, 2, 3,... , 2021. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Задачу решили:
22
всего попыток:
29
Найдите максимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется: 0 < a < b < c < d < e < f < g и 1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.
Задачу решили:
22
всего попыток:
26
Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение: Обозначим:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|