img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 20
Задача опубликована: 18.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 1680 и 2533
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?

Треугольник и прямые – 2

На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.

Задачу решили: 27
всего попыток: 30
Задача опубликована: 23.10.23 08:00
Прислал: TALMON img
Источник: По мотивам...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Внутри ожерелья из 8-и одинаковых жёлтых правильных 8-угольников заключён зелёный равносторонний 16-угольник, как показано на рисунке.

Ожерелье из 8-угольников

Найдите квадрат отношения площади одного жёлтого 8-угольника к площади зелёного 16-угольника.

Задачу решили: 13
всего попыток: 29
Задача опубликована: 01.11.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим замкнутую цепочку из m правильных n-угольников, центры которых являются вершинами правильного m-угольника. Каждые два соседних n-угольника имеют одну общую сторону. Другие k стороны каждого n-угольника находятся целиком внутри m-угольника, образуя в совокупности равносторонний m*k-угольник (на изображении примера для n=10, k=2, m=5 он покрашен в красный цвет):

Правильная цепочка из правильных многоугольников

Заметим, что не всегда удаётся замкнуть цепочку. Найдите количество троек {n, k, m}, для которых существуют замкнутые цепочки, в пределах 4 < n < 13, k>0.

Задачу решили: 9
всего попыток: 23
Задача опубликована: 01.03.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?

Задачу решили: 8
всего попыток: 53
Задача опубликована: 15.03.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино?

Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта

Три пентамино

считается только один раз.

Задачу решили: 15
всего попыток: 17
Задача опубликована: 15.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Найдите минимальное вещественное L, если K=97 и N=163.

Задачу решили: 13
всего попыток: 15
Задача опубликована: 17.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Дано: K=99, N=189, и L имеет минимально возможное вещественное значение. Найдите синус меньшего угла между сторонами прямоугольников.

Задачу решили: 12
всего попыток: 39
Задача опубликована: 22.04.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Какую центрально-симметричную фигуру можно сложить из трёх произвольных различных пентамино наибольшим количеством способов?

Введите в ответе это количество.

Задачу решили: 9
всего попыток: 40
Задача опубликована: 13.05.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Укажите количество центрально-симметричных фигур, каждую из которых можно сложить не меньше, чем двумя способами из одних и тех же трёх различных пентамино.

Задачу решили: 8
всего попыток: 66
Задача опубликована: 20.05.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино?

Каждая фигура считается столько раз, сколькими разными способами её можно сложить. Например, такая фигура

Три пентамино

считается два раза.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.