img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 341
всего попыток: 379
Задача опубликована: 22.03.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два велосипедиста одновременно стартовали на двух разных, но пересекающихся дорогах. Оба едут с постоянной скоростью 10 км/ч в сторону перекрёстка, где их дороги пересекаются. В момент старта один из велосипедистов находился на расстоянии 50 км от перекрёстка, а другой — на расстоянии 30 км от перекрёстка. Через сколько часов после старта оба велосипедиста будут на одинаковом расстоянии от перекрёстка?

Задачу решили: 152
всего попыток: 211
Задача опубликована: 14.11.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Треугольник ABC - равнобедренный: AB = AC.

На стороне BC, длина которой равна 43, находится точка D. Дано:

AD = 17

CD = 13

Найдите, чему равен угол ADC в градусах.

Задачу решили: 32
всего попыток: 72
Задача опубликована: 18.07.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти количество целых чисел n (1 ≤ n ≤ 300) для которых существует многочлен степени n с целыми коэффициентами, коэффициентом при xn равен 1, а его значение при любых целых значениях x, не делится на n.

Задачу решили: 71
всего попыток: 91
Задача опубликована: 28.09.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Диагонали трапеции делят её на четыре треугольника. Площади треугольников, прилегающих к основаниям, равны 50 и 32. Найдите площадь трапеции.

Задачу решили: 46
всего попыток: 63
Задача опубликована: 19.10.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Сторона треугольника равна 53. Растояние от центра окружности, описанной около этого треугольника, до этой стороны равно 37. Чему равна сумма всех возможных значений угла, противоположного этой стороне, в градусах?

Задачу решили: 54
всего попыток: 81
Задача опубликована: 02.05.16 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

В равнобедренный треугольник вписана окружность, радиус которой равен 12. Ещё одна окружность, радиус которой равен 3, касается первой окружности и двух боковых сторон исходного треугольника. Найти периметр треугольника?

Задачу решили: 30
всего попыток: 51
Задача опубликована: 13.02.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Найдите наименьшее натуральное число n, такое, что каждый из 5-и последовательных чисел n, n+1, n+2, n+3, n+4 делится на квадрат простого числа.

Задачу решили: 61
всего попыток: 66
Задача опубликована: 25.02.19 08:00
Прислал: TALMON img
Источник: Аристо
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Стёрка, карандаш и тетрадь стоят вместе 100 монет. Тетрадь стоит больше чем два карандаша. Три карандаша стоят больше чем четыре стёрки. Три стёрки стоят больше чем тетрадь. Сколько монет стоит тетрадь?

Задачу решили: 47
всего попыток: 60
Задача опубликована: 13.09.19 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Число 14 представили в виде суммы положительных чисел и перемножили слагаемые. Какое максимальное произведение могло получиться?

Задачу решили: 38
всего попыток: 41
Задача опубликована: 07.02.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите 2020-е по счету число натурального ряда, которое равно сумме каких-то трёх его различных делителей.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.