img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 20
Задача опубликована: 18.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 1680 и 2533
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?

Треугольник и прямые – 2

На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.

Задачу решили: 21
всего попыток: 28
Задача опубликована: 27.09.23 08:00
Прислал: TALMON img
Источник: Ибн Альберт
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

В день своего 18-летия Таня нарисовала выпуклый 18-угольник, каждый угол которого кратен 18 градусам.
Какими могут быть углы Таниного многоугольника (порядок углов не важен)? Укажите все возможные варианты и докажите, что других нет. В ответе укажите количество вариантов.

Задачу решили: 19
всего попыток: 20
Задача опубликована: 04.10.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 2533 и 1680
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Стороны правильного треугольника со стороной n, где nN, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?



На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.

Задачу решили: 27
всего попыток: 30
Задача опубликована: 23.10.23 08:00
Прислал: TALMON img
Источник: По мотивам...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Внутри ожерелья из 8-и одинаковых жёлтых правильных 8-угольников заключён зелёный равносторонний 16-угольник, как показано на рисунке.

Ожерелье из 8-угольников

Найдите квадрат отношения площади одного жёлтого 8-угольника к площади зелёного 16-угольника.

Задачу решили: 13
всего попыток: 29
Задача опубликована: 01.11.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим замкнутую цепочку из m правильных n-угольников, центры которых являются вершинами правильного m-угольника. Каждые два соседних n-угольника имеют одну общую сторону. Другие k стороны каждого n-угольника находятся целиком внутри m-угольника, образуя в совокупности равносторонний m*k-угольник (на изображении примера для n=10, k=2, m=5 он покрашен в красный цвет):

Правильная цепочка из правильных многоугольников

Заметим, что не всегда удаётся замкнуть цепочку. Найдите количество троек {n, k, m}, для которых существуют замкнутые цепочки, в пределах 4 < n < 13, k>0.

Задачу решили: 11
всего попыток: 17
Задача опубликована: 24.11.23 08:00
Прислал: TALMON img
Источник: По мотивам треугольников Авилова-Шеннона
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

4 параллельных  прямых расположены на плоскости одна за другой на одинаковых растояниях. 4 других параллельных  прямых, не параллельных предыдущим прямым, также расположены на той же плоскости одна за другой на одинаковых растояниях. Наконец, третья группа 4-х параллельных  прямых, не параллельных предыдущим, тоже расположены на той же плоскости одна за другой на одинаковых растояниях.

12 прямых

Эти 12 прямых делят плоскость на n областей. Найдите сумму всех возможных значений n.

Задачу решили: 8
всего попыток: 10
Задача опубликована: 01.12.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки.

Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым.

В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении:

Витки обхода

Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).

Задачу решили: 17
всего попыток: 24
Задача опубликована: 06.12.23 08:00
Прислал: TALMON img
Источник: Ибн Альберт
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Найдите количество таких функций f(x), определённых для всех вещественных чисел, что
f(sin(x)) + f(cos(x)) = sin(2x).

Если таких функций бесконечно много, введите -1 (минус один).

Задачу решили: 21
всего попыток: 31
Задача опубликована: 01.01.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

Найдите наименьшее целое число L, что в квадрат L × L можно поместить прямоугольник 1 × 2024.

С НОВЫМ ГОДОМ!

Задачу решили: 18
всего попыток: 23
Задача опубликована: 15.01.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: MikeNik (Mikhail Nikitkov)

Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K.

Прямоугольник в прямоугольнике

Определим функцию f(K, L) как наибольшее целое N.

Найдите сумму: f(1, 6) + f(2, 6) + f(3, 6) + f(4, 6) + f(5, 6) + f(6, 6).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.