img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 21
всего попыток: 129
Задача опубликована: 21.03.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

A - основание 4-угольной пирамиды.

B, C, D, E - её боковые грани.

B и D - две противоположные боковые грани (так же как и C и E). Их углы с основанием A:

α - угол между гранью B и основанием A.

β - угол между гранью D и основанием A.

x - сумма углов α и β, выраженных в градусах.

Какое максимальное целое значение может принимать x?

Задачу решили: 39
всего попыток: 115
Задача опубликована: 17.08.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Рассмотрим монотонно возрастающую последовательность всех натуральных чисел, которые являются суммой цифр квадрата хотя бы одного натурального числа (в десятичной системе счисления).

Чему равен миллионный член этой последовательности?

Задачу решили: 61
всего попыток: 105
Задача опубликована: 08.02.13 08:00
Прислал: TALMON img
Источник: Израильский форум математики сайта "Апельсин"...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Назовём число "зелёным", если его можно представить как сумму последовательных (не меньше двух) натуральных чисел.

Сколько существует не зелёных чисел между 10000 и 100000 включительно?

Задачу решили: 24
всего попыток: 69
Задача опубликована: 31.05.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Доска 16х16 разделена на квадраты со стороной длины 1. Сколько сушествует троек различных узлов доски, через которые проходит парабола?

Задачу решили: 52
всего попыток: 78
Задача опубликована: 24.06.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Bull (Mike Bulatov)

Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло больше людей чем в предыдущем. Ввести сумму всех возможных значений N (одно и то же значение N считать только один раз).

Задачу решили: 235
всего попыток: 249
Задача опубликована: 18.10.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: kot_vi

В одной семье (мама, папа и дети) было 7 дочерей, а у каждой из них - один брат. Сколько всего детей было в этой семье?

Задачу решили: 39
всего попыток: 109
Задача опубликована: 21.10.13 08:00
Прислал: TALMON img
Источник: Литовский кружок
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество упорядоченных пар чисел (a,b) (0≤a,b≤10), для которых существует многочлен P(x) с целочисленными коэффициентами, и P(4)=a, P(11)=b?

Задачу решили: 27
всего попыток: 139
Задача опубликована: 21.02.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Рассмотрим простое число p и трёхчлен:

2x² + 11x + 1.

Обозначим:

f(p) - количество целых неотрицательных x, не превосходящих p, при которых трёхчлен делится на p.

g(p) - сумма всех этих x для данного p.

Найдите сумму g(p) по всем таким p, для которых f(p)=1.

Задачу решили: 32
всего попыток: 72
Задача опубликована: 18.07.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти количество целых чисел n (1 ≤ n ≤ 300) для которых существует многочлен степени n с целыми коэффициентами, коэффициентом при xn равен 1, а его значение при любых целых значениях x, не делится на n.

Задачу решили: 23
всего попыток: 74
Задача опубликована: 23.02.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Найдите наибольшее натуральное число, которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., n, (n = количество цифр этого числа. Число записано без ведущих нулей. Цифры могут повторяться).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.