![]()
Лента событий:
avilow решил задачу "Правильный 2025-угольник" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
23
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите сумму: f(1, 6) + f(2, 6) + f(3, 6) + f(4, 6) + f(5, 6) + f(6, 6). ![]()
Задачу решили:
17
всего попыток:
19
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите f(9, 12) + f(9, 13). ![]()
Задачу решили:
10
всего попыток:
11
Найдите минимальную сумму таких натуральных a и b (a>b), что на эллипсе: x2/a2 + y2/b2 = 1 лежат ровно 420 точек с целочисленными координатами. ![]()
Задачу решили:
6
всего попыток:
34
I. Найдите количество эллипсов x2/a2 + y2/b2 = 1 (a и b натуральные, a>b, a+b=6630), на каждом из которых лежат ровно 36 точек с целочисленными координатами. II. То же самое, только a+b=8125 (вместо 6630) Введите в ответе сумму этих двух количеств (I и II). ![]()
Задачу решили:
12
всего попыток:
18
На иллюстрации изображенны точки с целочисленными координатами на эллипсе x2/452 + y2/302 = 1 и на гиперболе x2/452 - y2/302 = 1. На эллипсе их всего 12 штук: (±45, 0), (0, ±30), (±36, ±18), (±27, ±24). Найдите: б. Количество точек с целочисленными координатами на гиперболе x2/200002 – y2/64002 = 1.
![]()
Задачу решили:
11
всего попыток:
46
Рассмотрим открытый шар x2 + y2 + z2 < R2 и пересекающие его плоскости x=a, y=b, z=c, где a, b, c – все целые числа в пределах: |a|, |b|, |c| < R. На сколько частей эти плоскости делят шар, если R=6? ![]()
Задачу решили:
14
всего попыток:
51
Рассмотрим сферу x2 + y2 + z2 = R2 и пересекающие её плоскости x=a, y=b, z=c, где a, b, c – все целые числа в пределах: -R < a, b, c < R. На сколько частей эти плоскости делят сферу, если R=6 ? (Считаются только невырожденные части сферы).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|