![]()
Лента событий:
TALMON предложил задачу "Раскрашенные точки на квадратной сетке" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
6
всего попыток:
20
Найдите количество частей, на которые разбивается пятимерное вещественное пространство гиперплоскостями x1=0, x2=0, x3=0, x4=0, x5=0, ![]()
Задачу решили:
20
всего попыток:
30
При каком значении параметра P система: x1 + 2x2 + 4x3 + 8x4 + 8x5 = 16 не имеет решения? ![]()
Задачу решили:
23
всего попыток:
25
В футбольном турнире каждая команда сыграла с каждой из остальных ровно по одному разу, причём ровно половина команд ни разу не выиграли, а ровно пятая часть игр закончились вничью. ![]()
Задачу решили:
15
всего попыток:
17
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Найдите минимальное вещественное L, если K=97 и N=163. ![]()
Задачу решили:
13
всего попыток:
15
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Дано: K=99, N=189, и L имеет минимально возможное вещественное значение. Найдите синус меньшего угла между сторонами прямоугольников. ![]()
Задачу решили:
19
всего попыток:
30
Для каждого натурального N>1 определены: Найдите максимальное N, меньшее 12345, для которого g(N) нецело. ![]()
Задачу решили:
15
всего попыток:
82
Найдите минимальную сумму таких натуральных a и b (a>b), что на эллипсе: x2/a2 + y2/b2 = 1 лежат ровно 36 точек с целочисленными координатами. ![]()
Задачу решили:
6
всего попыток:
34
I. Найдите количество эллипсов x2/a2 + y2/b2 = 1 (a и b натуральные, a>b, a+b=6630), на каждом из которых лежат ровно 36 точек с целочисленными координатами. II. То же самое, только a+b=8125 (вместо 6630) Введите в ответе сумму этих двух количеств (I и II). ![]()
Задачу решили:
13
всего попыток:
18
Найдите количество точек с целочисленными координатами на правой ветви (x>0) гиперболы x2/22 – y2/32 = 20252 Вводите в ответе квадрат этого числа. ![]()
Задачу решили:
6
всего попыток:
15
Найдите количество упорядоченных восьмёрок целых чисел A, B, C, D, E, F, G, H, каждое из которых в пределах от -10 до +10 включительно, для которых существуют такие рациональные числа α, β, γ, δ, что выполняется равенство: (A + B√2 + C√3 + D√6) / (E + F√2 + G√3 + H√6) = α + β√2 + γ√3 +δ√6
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|