img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 117
Задача опубликована: 09.11.16 08:00
Прислал: TALMON img
Источник: По мотивам задачи "Представляем число"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите наименьшее натуральное число, представимое в виде суммы 10-и различных натуральных слагаемых с одинаковой суммой цифр и в виде суммы 11-и различных натуральных слагаемых с одинаковой суммой цифр.

Задачу решили: 30
всего попыток: 61
Задача опубликована: 16.12.16 08:00
Прислал: TALMON img
Источник: По мотивам задачи "Пары чисел и кубические ур...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество пар действительных чисел b и c таких, что оба уравнения x3+bx2+cx+10=0 и y3+(b+21)y2+(14b+c+147)y+(49b+7c+353)=0 имеют по три различных целых корня.

Задачу решили: 30
всего попыток: 51
Задача опубликована: 13.02.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Найдите наименьшее натуральное число n, такое, что каждый из 5-и последовательных чисел n, n+1, n+2, n+3, n+4 делится на квадрат простого числа.

Задачу решили: 43
всего попыток: 86
Задача опубликована: 10.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько есть чисел, состоящих из цифр от 1 до 9 (каждая цифра входит 1 раз), которые делятся нацело на 99?

Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Это открытая задача (*?*)
Задача опубликована: 21.08.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.

Задачу решили: 38
всего попыток: 44
Задача опубликована: 29.09.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Три деда примерно одного возраста (разность их возрастов не более 10 лет). Их возрасты – натуральные числа, являющиеся корнями уравнения: x3 - Ax2 + 14838x – C = 0, где A и C - также натуральные числа. Найдите число C.

Задачу решили: 41
всего попыток: 115
Задача опубликована: 13.12.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите количество комплексных чисел a+bi (a и b - целые), для которых существует комплексное число c+di (c и d - тоже целые), таких, что произведение: (a+bi)(c+di) = 16.

Задачу решили: 21
всего попыток: 30
Задача опубликована: 29.06.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Найдите минимальное натуральное число n, такое, что ровно одна четвёртая всех натуральных чисел от 1 до n включительно не содержат цифру 0.

Задачу решили: 25
всего попыток: 31
Задача опубликована: 07.12.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Построили прямоугольный треугольник OA0A1 (угол OA0A1 - прямой). Затем построили прямоугольный треугольник OA1A2 (угол OA1A2 - прямой), точки A0 и A2 находятся с разных сторон отрезка OA1, длины отрезков:

|OA1|² = |OA0| • |OA2|.

Затем построили прямоугольный треугольник OA2A3 (угол OA2A3 - прямой), точки A1 и A3 находятся на разных сторонах отрезка OA2, длины отрезков:

|OA2|² = |OA1| • |OA3|.

И так далее, несколько раз.
Сумма углов A0OA1 + A1OA2 + A2OA3 + . . . = 360°
Оказалось, что гипотенуза последнего треугольника лежит на отрезке OA0 (содержит его) и ровно в k раз длинее него, где k - целое число.
Найдите сумму всевозможных значений k.
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.