Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
89
всего попыток:
185
У фермера в хозяйстве овцы и коровы, фермер арендует пастбище у своего соседа. Сосед сообщает ему, что из предыдущего опыта известно, что 140 овец за 12 дней съедают всю растительность на пастбище, 60 овец за 60 дней съедят всю растительность на этом же пастбище (трава растет). 30 коров поедят всю растительность за 20 дней. Фермер решает выпустить всех своих 12 коров на пастбище совместно с овцами на 30 дней аренды. Сколько овец он может выпустить на арендуемое пастбище?
Задачу решили:
38
всего попыток:
139
Дан равносторонний шестиугольник с длиной стороны 5 и с перпендикулярными друг другу диагоналями 11 и 8. На какое минимальное число подобных треугольников его можно разрезать?
Задачу решили:
119
всего попыток:
184
Даны две концентрические окружности. Хорда большей из них является касательной к меньшей окружности и имеет длину 100. Чему равна площадь кольца между двумя окружностями. Ответ округлите до ближайшего целого.
Задачу решили:
56
всего попыток:
202
Какое наименьшее количество составных чисел нужно выбрать из первых 1200 натуральных чисел, так чтобы среди них гарантированно были два числа с общим делителем большим 1.
Задачу решили:
56
всего попыток:
74
На доске написаны n последовательных натуральных чисел, начиная с 1. Когда было стерто одно число, то оказалось, что среднее арифметическое стало равным 35 7/17. Какое число стерли?
Задачу решили:
66
всего попыток:
97
Найти наименьшее натуральное число N такое, что N! кратно 102015.
Задачу решили:
45
всего попыток:
124
Дана неубывающая положительная функция F(x): R->R (R-множество рациональных чисел), определенная на интервале [0,1], удовлетворяющая двум условиям: (a) F(x/3)=F(x)/2 (b) F(1-x)=1-F(x) Найдите F(1/13).
Задачу решили:
36
всего попыток:
75
Три вершины треугольника с длинами сторон a,b,c имеют целочисленные координаты и лежат на окружности радиуса R=20. Найдите минимальное возможное значение произведения a•b•c.
Задачу решили:
23
всего попыток:
112
На шахматной доске 8x8 разместили максимально возможное количество ферзей каждого цвета, так что ни один черный ферзь не находится под ударом никакого из белых. Сколько всего ферзей находится на доске?
Задачу решили:
43
всего попыток:
52
Одна из вершин треугольника имеет координаты (7, 1), другая вершина лежит на оси X, третья – на линии графика функции y=x. Определите минимально возможное значение периметра этого треугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|