Лента событий:
putout решил задачу "Дырявый квадрат - 5" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
82
всего попыток:
215
В казино десятая часть игроков - профессионалы. Вероятность вытащить туза из колоды для профессионала равна 9/10, для обычного игрока 1/13. Один из партнеров по игре, перемешав колоду, сразу вытаскивает туза. Чему равна вероятность, что перед нами профессионал.
Задачу решили:
89
всего попыток:
185
У фермера в хозяйстве овцы и коровы, фермер арендует пастбище у своего соседа. Сосед сообщает ему, что из предыдущего опыта известно, что 140 овец за 12 дней съедают всю растительность на пастбище, 60 овец за 60 дней съедят всю растительность на этом же пастбище (трава растет). 30 коров поедят всю растительность за 20 дней. Фермер решает выпустить всех своих 12 коров на пастбище совместно с овцами на 30 дней аренды. Сколько овец он может выпустить на арендуемое пастбище?
Задачу решили:
38
всего попыток:
139
Дан равносторонний шестиугольник с длиной стороны 5 и с перпендикулярными друг другу диагоналями 11 и 8. На какое минимальное число подобных треугольников его можно разрезать?
Задачу решили:
42
всего попыток:
113
Через маленький населённый пункт Грюнхаузен проходит по прямой линии оживлённая трасса федерального значения. Жители городка добились наконец постройки объездной дороги. График показывает участок карты, на которой прямая через точки А и C — бывшая трасса, а линия, проходящая через красные точки — новая объездная дорога. Все расстояния даны в километрах. Новая дорога проходит через точки A, B, C и в точке А плавно переходит в старую трассу. Эта дорога описывается полиномом третьего порядка с рациональными коэффициентами. Закрашенная область – собственно городок. Его северная граница соответствует параболе c рациональными коэффициентами. Граница городка проходит через точки D,E и F. Участок земли, находящийся между новой дорогой, северной границей городка и прямолинейными участками старой трассы (до пунктов А и C), будет использован под промзону. Сколько денег получит городская казна при продаже участка по цене 10.95 евро за квадратный метр? Ответ представьте в миллионах евро, округлив до ближайшего целого числа.
Задачу решили:
38
всего попыток:
377
На рисунке ноль имеет 2 квадратика касающихся квадратиков следующей цифры – единицы. Единица имеет 3 квадратика касающихся квадратиков соседних цифр. Цифра 2 имеет 4 квадратика касающихся квадратиков соседних цифр и т.д. Девятка имеет 4 квадратика касающихся квадратиков цифры 8. Если значение каждой цифры умножить на число квадратиков касающихся квадратиков других цифр и сложить эти произведения, получим: 0·2+1·3+2·4+3·6+4·7+5·8+6·5+7·6+8·9+9·4=277. Переставить цифры не переворачивая их так, чтобы получить максимальную сумму. Ответом является полученная сумма. Число может начинаться с нуля, накладывать цифры друг на друга и выдвигать по вертикали нельзя.
Задачу решили:
46
всего попыток:
72
Тридцать два натуральных числа от 1 до 32 можно разместить по кругу так, что любые два соседних числа в сумме дают полный квадрат. Записав затем все числа в ряд друг за другом без пробелов, начиная с числа 1, получим 55-значное число. Найдите наибольшее такое число.
Задачу решили:
119
всего попыток:
184
Даны две концентрические окружности. Хорда большей из них является касательной к меньшей окружности и имеет длину 100. Чему равна площадь кольца между двумя окружностями. Ответ округлите до ближайшего целого.
Задачу решили:
36
всего попыток:
156
На ипподроме происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые лошади могут придти к финишу одновременно (голова в голову)? (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).
Задачу решили:
145
всего попыток:
233
Двое A и B играют в карты. Ставка в игре 1 рубль. Когда было сыграно ровно n игр, оказалось, что А выиграл 48 игр, а B выиграл 47 рублей. Чему равно n?
Задачу решили:
50
всего попыток:
157
Муравей начинает свой путь в вершине куба и перемещается по ребрам в соответствии со следующим правилом: в каждой вершине он выбирает одно из трех ребер выходящих из этой вершины. Каждое ребро он выбирает с одинаковой вероятностью, независимо от предыдущего выбора. Какова вероятность, что муравей побывает в каждой вершине лишь раз?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|