Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
37
На гипотенузе АВ треугольника АВС во внешнюю сторону построен квадрат ABDE. Отношение длин катетов ВС:АС=1:2. Прямая CD пересекает отрезок АВ в точке К . Прямая, перпендикулярная к CD, проведенная через точку К пересекает отрезок АЕ в точке М. Найти отношение длин отрезков АМ/МЕ.
Задачу решили:
28
всего попыток:
31
На катетах треугольника АВС (АС=12, ВС=5) построены во внешнюю сторону квадраты АСKL и BCMN. Прямые BL и AN, пересекаясь между собой в точке R, пересекаются соответственно с катетами АС и ВС в точках P и Q. Найти модуль разности площадей четырехугольника CPRQ и треугольника ABR.
Задачу решили:
21
всего попыток:
30
Прямоугольная трапеция с целочисленными основаниями с вписанной окружностью и с целочисленным радиусом такова, что она равновелика квадрату с целочисленной стороной. При этом известно, что длина малого основания трапеции является простым числом. Найти сумму длин сторон первых трех таких квадратов (по возрастанию).
Задачу решили:
27
всего попыток:
35
С вершины А треугольника АВС проведена медиана АD. Стороны |АВ|:|АС|=1:2. На отрезке BD стороны ВС отмечена точка Е так, что угол ЕАВ равен углу CAD. Найти отношение |ВЕ|/|ED|.
Задачу решили:
25
всего попыток:
29
Стороны треугольника по часовой или против часовой стрелке разделены точками соответственно 1:1, 1:2, 1:3. Чевианы к этим точкам внутри треугольника образовывают треугольник при взаимном пересечении. Найти отношение площади этого треугольника к площади заданного.
Задачу решили:
22
всего попыток:
25
Трапеция, у которой точки середин всех сторон принадлежат одной окружности, имеет боковые стороны 7 и 4, малое основание 1. Найти длину большого основания.
Задачу решили:
26
всего попыток:
31
В прямоугольнике ABCD проведены отрезки AL (L - середина ВС), DK (K - середина AL), CN (N - середина DK), LM (M - середина СN). Найти отношение площади четырехугольника KLMN к площади прямоугольника ABCD.
Задачу решили:
18
всего попыток:
25
Внутри прямоугольной трапеция ABCD (боковая сторона ВС перпендикулярна основаниям АВ и CD) проведена полуокружность с центром О (точка середины стороны ВС) и диаметром, равным длине ВС, которая имеет точку касания М с боковой стороной AD. Отрезок ВМ пересекается с диагональю АС в точке К. Отрезки |ВК|=12, |КМ|=3. Найти квадрат площади трапеции.
Задачу решили:
14
всего попыток:
16
В трапеции ABCD (AB-большое основание) проведены диагонали АС и BD (E-точка их пересечения). Прямая, проведенная через С параллельно AD, пересекает диагональ BD в точке F. Площади треугольников DEC, EFC, FBC целочисленны и каждая имеет двузначное численное значение. Найти площадь треугольника EFC, если известно, что площади двух других треугольников являются последовательными числами.
Задачу решили:
24
всего попыток:
32
На плоскости изображен выпуклый 9-тиугольник А1А2А3А4А5А6А7А8А9. Найти сумму углов "звёздочки" А1А3А5А7А9А2А4А6А8А1 в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|