Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
45
В квадрате АBCD на диагонали АС отмечены точки Е, F так, что |AE|:|EF|:|FC|=5:11:4. Через эти точки и вершины квадрата проведены прямые, которые делят квадрат на 10 треугольников с наименьшими целочисленными площадями. Найти площадь этого квадрата.
Задачу решили:
31
всего попыток:
42
В прямоугольном треугольнике АВС (АВ - гипотенуза) с катетами |АС|=2|ВС| проведены биссектриса CD и чевиана АЕ, которая делит ВС в отношении |ВЕ|:|ЕС|=1:2 (О - точка пересечения их). Обозначим угол BDC=α, угол ЕОС=β, угол ВАЕ=γ. Найти (tgα + tgβ)/tgγ.
Задачу решили:
33
всего попыток:
40
В треугольнике АВС проведены чевианы АА1 и ВВ1, которые делят стороны АС и ВС так, что СВ1:АВ1=1/3, СА1:ВА1=1/2. Точка пересечения их О отстоит от АВ на расстоянии 6. Найти расстояние от вершины С до прямой АВ.
Задачу решили:
35
всего попыток:
43
В равнобедренном треугольнике АВС (АС - основание), боковая сторона которого равна 8, а основание равно радиусу описанной окружности, проведена высота BD и перпендикуляры DE, DF к боковым сторонам. Найти площадь пятиугольника AEOFC (O - центр описанной окружности).
Задачу решили:
30
всего попыток:
52
В остроугольном треугольнике АВС с целочисленными сторонами наименьшего периметра угол ВАС в два раза больше угла АВС. Найти длину стороны ВС.
Задачу решили:
39
всего попыток:
43
Из пункта А и пункта В навстречу друг другу отправились двое, имеющие оба четное значение скоростей (км/час) и встретились через 8 часов. Если бы один из них увеличил свою скорость на 14%, а второй на 15%, они встретились бы через 7 часов. Найти наименьшее расстояние между пунктами А и В в км.
Задачу решили:
33
всего попыток:
41
Найдите наибольшее четырехзначное простое число из разных цифр кроме нуля, у которого сумма всевозможных двузначных чисел с использованием его цифр равна 484.
Задачу решили:
30
всего попыток:
33
На диагонали АС квадрата АВСD построили прямоугольник APQC (AP=AB) так,что вершина В оказалась внутри прямоугольника. Прямая PB пересекает сторону DQ треугольникa DPQ в точке К и делит его на два треугольника DPK и PQK, у которых площади S1 и S2 соответственно. Найти (|S1|2-|S2|2)/(|S1|*|S2|).
Задачу решили:
15
всего попыток:
74
Квадрат 3×3 можно заполнить числами от 1 до 9 магическим образом, т. е. так, что суммы чисел по столбцам, строкам и диагоналям равны - это число называется магической суммой. Можно также подобрать девять различных натуральных чисел, обратными к которым можно заполнить квадрат магическим образом так, что магическая сумма будет равна 1/N. Найдите минимально возможное натуральное N. В качестве решения укажите все подобранные числа.
Задачу решили:
27
всего попыток:
56
Около трапеции ABCD c основаниями |АВ|=3*|CD| описана окружность диаметром АВ. В точках А и С проведены касательные, которые пересекаются в точке К. Найти значение |KD|2, если известно, что оно равно численно 2*|АВ|.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|