img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 30
Задача опубликована: 03.11.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В прямоугольнике ABCD провели два отрезка СК (точка К на стороне АВ, |АК|:|КВ|=1:1) и ВМ (точка М на стороне AD, |AM|:|MD|=2:1). Точка F - точка пересечения этих двух отрезков. Найти отношение площади треугольника KBF к площади четырехугольника MFCD. 

Задачу решили: 22
всего попыток: 35
Задача опубликована: 06.11.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Две окружности с радиусами R1, R2 расположены так, что длина отрезка между центрами равна R1+R2+d (d-расстояние между окружностями). Найти наименьшее целочисленное значение длины отрезка внутренней касательной, если известно, что d, R1, R2 - последовательные натуральные числа.

Задачу решили: 17
всего попыток: 23
Задача опубликована: 22.11.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

В трапеции с целочисленными основаниями проведены три параллельных целочисленных отрезка: 1) через точку пересечения диагоналей. 2) средняя линия трапеции. 3) отрезок деления данной трапеции на две равновеликие трапеции. Найти наименьшую сумму длин всех пяти отрезков, включая основания данной трапеции.

Задачу решили: 21
всего попыток: 23
Задача опубликована: 08.12.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В описанной трапеции ABCD (AD и ВС - основания) |АВ|=21, |ВС|=9, |CD|=24. Найти длину хорды вписанной окружности, образованной диагональю АС.

Задачу решили: 22
всего попыток: 32
Задача опубликована: 18.12.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Вписанная в трапецию окружность разделила среднюю линию на три отрезка 3, 24, 8. Найти длину большого основания.

Задачу решили: 22
всего попыток: 24
Задача опубликована: 22.12.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Точка вне квадрата находится на расстояниях от концов одной из диагоналей в отношении между собой 1:4. Угол между отрезками этих расстояний прямой. Найти отношение расстояний от этой точки до концов другой диагонали (меньшего к большему).

Задачу решили: 19
всего попыток: 25
Задача опубликована: 10.01.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти квадрат отношения радиусов, описанных около двух четырехугольников со сторонами 2, 3, 4, 5 и 3, 4, 5, 6.

Задачу решили: 22
всего попыток: 24
Задача опубликована: 02.02.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Золотой треугольник и прямоугольный с острым углом 36° имеют равные по длине боковые стороны первого и гипотенузы второго треугольника. Чему равен катет, противолежащий углу 54°, если сумма длин основания и боковой стороны золотого треугольника равна 36.

Задачу решили: 21
всего попыток: 52
Задача опубликована: 07.02.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: vochfid

Радиус вписанной окружности в треугольник со сторонами 6 м и 10 м равен 2 м. Найти наибольшее значение третьей стороны в мм, округлив его до ближайшего целого.

Задачу решили: 18
всего попыток: 24
Задача опубликована: 13.03.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Два прямоугольных треугольника, в каждом из которых проведены высоты с прямого угла и по одной биссектрисе с острого угла. В одном тругольнике точка пересечения высоты и биссектрисы делит высоту на отрезки 15 и 9, считая от вершины прямого угла. В другом треугольнике делит биссектрису на отрезки 9 и 6, считая от вершины, с которой проведена биссектриса. Найти отношение площадей треугольников (меньшей к большей).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.