Лента событий:
tubaki решил задачу "Простые делители типа 4k+3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
93
всего попыток:
217
Чему равна последняя цифра числа [1020000/(10100+3)], где [x] означает "целая часть числа x"?
Задачу решили:
48
всего попыток:
111
Петя подбрасывает честную игральную кость (каждое из чисел 1, 2, 3, 4, 5, 6 выпадает с вероятностью 1/6) несколько раз подряд, пока суммарное количество очков не станет равным n или не превысит n. Пусть P(n) — вероятность того, что после последнего броска суммарное число очков будет равно n. Найти предел P(n), когда n стремится к бесконечности. (Ответ представьте в виде несократимой дроби p/q, где p и q — натуральные числа.)
Задачу решили:
25
всего попыток:
42
Пусть b — натуральное число, большее единицы. Для каждого натурального числа n определим d(n) как количество цифр числа n, записанного в системе счисления с основанием b. Определим последовательность f(n) следующим образом: f(1)=1, f(2)=2, ..., f(n) = n·f(d(n)). При каких значениях b ряд сходится? В ответе укажите сумму всех таких значений.
Задачу решили:
49
всего попыток:
63
Сколько существует пар целых чисел (m>2, n>2), для каждой из которых существует бесконечно много таких натуральных чисел k, что (km+k−1) делится на (kn+k2−1)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|