img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Три числа и степени" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 233
всего попыток: 287
Задача опубликована: 15.09.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: ilkash (Илья Денисов)

На острове Невезения проживают только рыцари и лжецы. Если лжецу задать вопрос "сколько?", он называет число на 2 большее или на 2 меньшее, чем правильный ответ; рыцарь, разумеется, отвечает верно. Путешественник встретил двух островитян и спросил: "Сколько рыцарей и сколько лжецов живут на вашем острове?" Первый ответил: "Если не считать меня, то 1002 рыцаря и 1001 лжец." Второй: "Если не считать меня, то 999 рыцарей и 1000 лжецов." Сколько на самом деле рыцарей и лжецов на острове Невезения? В ответе укажите произведение числа рыцарей на число лжецов.

Задачу решили: 115
всего попыток: 210
Задача опубликована: 20.09.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Shurik_zhulik

Вася записал в тетрадке числа 1, 2, 3, ..., 11. Вася и Петя по очереди (начинает Вася) стирают по три любых числа до тех пор, пока не останется два числа. Вася выигрывает у Пети количество монеток, равное разности этих двух чисел. Какой максимальный выигрыш может обеспечить себе Вася при правильной стратегии обоих игроков?

Задачу решили: 118
всего попыток: 243
Задача опубликована: 24.09.10 08:00
Прислала: Marishka24 img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Какое минимальное число звёздочек можно так расставить в клетках таблицы 4×4, чтобы после вычёркивания любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда оставалась хотя бы одна звездочка?

Задачу решили: 175
всего попыток: 305
Задача опубликована: 15.10.10 08:00
Прислала: Marishka24 img
Источник: Уральский турнир юных математиков
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: marafon (Игорь Пущин)

Чтобы от театра доехать до цирка, можно сесть на остановке на автобус №1 или на автобус №2. Они ходят с постоянными интервалами, причем автобус №1 в 2 раза реже, чем №2. За последние 20 минут автобус прошёл 16 минут назад, 10 минут назад и 2 минуты назад. Через сколько минут придёт следующий автобус?

Задачу решили: 110
всего попыток: 160
Задача опубликована: 05.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не  превышала 12?

Задачу решили: 60
всего попыток: 97
Задача опубликована: 01.12.10 12:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.

Задачу решили: 122
всего попыток: 257
Задача опубликована: 06.12.10 08:00
Прислала: Marishka24 img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg

В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?

Задачу решили: 178
всего попыток: 215
Задача опубликована: 23.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: шахматыimg
Лучшее решение: bbny

На шахматной доске стоят 13 ладей так, что каждое незанятое поле находится под ударом хотя бы одной из них. Какое максимальное количество ладей можно снять с доски, чтобы все незанятые поля находились под ударом?

 


 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.