Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
175
всего попыток:
305
Чтобы от театра доехать до цирка, можно сесть на остановке на автобус №1 или на автобус №2. Они ходят с постоянными интервалами, причем автобус №1 в 2 раза реже, чем №2. За последние 20 минут автобус прошёл 16 минут назад, 10 минут назад и 2 минуты назад. Через сколько минут придёт следующий автобус?
Задачу решили:
91
всего попыток:
221
В цепи 150 звеньев, каждое массой 1 г. Какое наименьшее число звеньев нужно расковать, чтобы из образовавшихся частей (с учётом раскованных звеньев) можно было составить все целочисленные массы от 1 до 150 г? (Масса раскованного звена тоже равна одному грамму.)
Задачу решили:
159
всего попыток:
279
Сколько существует трёхзначных чисел n таких, что число n2+8n–1 делится на 239?
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Задачу решили:
111
всего попыток:
161
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
145
всего попыток:
232
Какое наибольшее количество квадратов натуральных чисел можно написать, чтобы все написанные цифры были разными?
Задачу решили:
65
всего попыток:
99
Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)
Задачу решили:
91
всего попыток:
125
В чемпионате мира по тыквондо 18 спортсменов состязались в разбивании тыквы одним ударом на максимальное число частей. Все участники показали различные результаты, причём у чемпиона получилось втрое больше частей, чем у занявшего 10-е место, но меньше, чем у занявших 9-е и 10-е места, вместе взятых. Какого результата добился чемпион, если общее количество частей у всех участников оказалось меньше 270? Примечание: неразбитая тыква считается одной частью!
Задачу решили:
171
всего попыток:
282
От трёхзначного числа отняли сумму кубов его цифр. Какой наибольший результат мог при этом получиться?
Задачу решили:
52
всего попыток:
503
В однокруговом волейбольном турнире (без ничьих) участвовало 23 команды. Три команды А, В, С образуют циклическую тройку, если А выиграла у В, В — у С, а С — у А. Каково наибольшее возможное количество циклических троек?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|