Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
56
Пусть m и n - различные натуральные числа такие, что их средние гармоническое, геометрическое и арифметическое тоже натуральные числа. Чему равно минимальное возможное значение среднего арифметического?
Задачу решили:
135
всего попыток:
163
Найдите площадь зеленого квадрата.
Задачу решили:
35
всего попыток:
57
Пусть действительные числа x и y такие, что x2+y2=(x/y+y/x)2. Пусть m - наибольшее, а M - наименьшее возможные числа такие, что верно всегда m≤(x3y3+x2y+xy2+1)/x3y3≤M. Найдите M+m.
Задачу решили:
36
всего попыток:
69
В правильном выпуклом 12-угольнике ABCDEFGHIJKL со стороной 1 провели отрезки AF, BG и CH, которые при пересечении образовали треугольник. Найдите его площадь. Ответ укажите с точностью до 5-го знака после запятой.
Задачу решили:
37
всего попыток:
61
Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами: 1) f(19)=19 2) f(97)=97 3) f(f(x))=x Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.
Задачу решили:
33
всего попыток:
47
Рассмотрим пары неотрицательных целых чисел (xi,yi) удовлетворяющих равенству: 2x2+x=3y2+y таких, что x1+y1 < x2+y2 < .... Найдите сумму первых 4-х пар значений x1+y1+x2+y2+x3+y3+x4+y4.
Задачу решили:
53
всего попыток:
71
Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.
Задачу решили:
60
всего попыток:
105
Найти количество упорядоченных троек натуральных чисел a < b < c таких, что a1/2 + b1/2 + c1/2 = 20001/2.
Задачу решили:
59
всего попыток:
89
Для действительных чисел x, y, z, u верны следующие уравнения: x2+y2=16, z2+u2=25, xu-yz=20. Найти максимум x·z.
Задачу решили:
42
всего попыток:
58
Найти количество функций удовлетворяющих следующему условию: f(x2+yf(z))=xf(x)+zf(y) для всех действительных x, y и z.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|