img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 71
всего попыток: 115
Задача опубликована: 19.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: perfect_result... (Александр Опарин)

Найти максимальное значенияе n < 2013 при котором все коэффициенты в разложении бинома Ньютона (a + b)n нечетны?

Задачу решили: 117
всего попыток: 160
Задача опубликована: 07.08.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Чему равен остаток от деления 3104 на 103?

Задачу решили: 100
всего попыток: 463
Задача опубликована: 14.08.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

В подвале имеется некоторое количество лампочек, выключатели для которых находятся снаружи так, что узнать какой выключатель соответствует какой лампочке можно только спустившись в подвал.

Для того, чтобы установить соответствие для всех лампочек хозяину потребовалось спуститься 2 раза. Какое максимальное количество лампочек могло быть в подвале?

Задачу решили: 77
всего попыток: 176
Задача опубликована: 16.08.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Из колоды карт убрали одну масть, так что осталось в ней 27 карт. Первый игрок загадывает карту, а второй раскладывает по одной карте в три стопки: первую карту в первую стопку, вторую - во вторую, третью - в третью, затем четвертую в первую, пятую во вторую и т.д. После того как все карты будут разложены, первый говорит в какой стопке находится задуманная карта. Далее второй складывает стопки вместе, так чтобы стопка с картой оказалась посредине. После этого снова повторяется процедура с раскладыванием два раза и в конце первый также указывает стопку, где находится задуманная карта. На каком месте от начала стопки (сверху) окажется задуманная карта?

Задачу решили: 107
всего попыток: 148
Задача опубликована: 26.08.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Катер  проплывает мимо острова с постоянной скоростью. Расстояния до острова в 8, 10 и 11 часов были равны 7, 5 и 11 километров соответственно. Каким будет расстояние в 12 часов?

Задачу решили: 81
всего попыток: 115
Задача опубликована: 28.08.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

3 литра воды разлили в два сосуда. Из каждого сосуда поочереди переливают половину воды, находящейся в нем, в другой сосуд. Найдите отношение объема воды в сосуде с меньшим количеством к объему воды в сосуде с большим после 100 переливаний. Объемы воды в литрах округлите с точностью до 1 миллилитра.

Задачу решили: 111
всего попыток: 149
Задача опубликована: 18.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Решите уравнение $x^{x^{x^{...}}}=3$ (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.

Задачу решили: 77
всего попыток: 127
Задача опубликована: 20.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти сумму всех целых чисел m и n таких, что log (nm) = log m * log n и log m и log n - целые числа.

Задачу решили: 50
всего попыток: 96
Задача опубликована: 31.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти количество упорядоченных троек целых положительных чисел a ≤ b ≤ c таких, что
abc-16=4a+4b+4c.

Задачу решили: 47
всего попыток: 67
Задача опубликована: 12.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Random (Руслан Головин)

х1, x2, x3, x4, x5 - действительные числа такие, что
х1+x2+x3+x4+x5 = 8
х12+x22+x32+x42+x52= 16.
Найти максимум x5.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.