Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
71
всего попыток:
115
Найти максимальное значенияе n < 2013 при котором все коэффициенты в разложении бинома Ньютона (a + b)n нечетны?
Задачу решили:
117
всего попыток:
160
Чему равен остаток от деления 3104 на 103?
Задачу решили:
100
всего попыток:
463
В подвале имеется некоторое количество лампочек, выключатели для которых находятся снаружи так, что узнать какой выключатель соответствует какой лампочке можно только спустившись в подвал. Для того, чтобы установить соответствие для всех лампочек хозяину потребовалось спуститься 2 раза. Какое максимальное количество лампочек могло быть в подвале?
Задачу решили:
77
всего попыток:
176
Из колоды карт убрали одну масть, так что осталось в ней 27 карт. Первый игрок загадывает карту, а второй раскладывает по одной карте в три стопки: первую карту в первую стопку, вторую - во вторую, третью - в третью, затем четвертую в первую, пятую во вторую и т.д. После того как все карты будут разложены, первый говорит в какой стопке находится задуманная карта. Далее второй складывает стопки вместе, так чтобы стопка с картой оказалась посредине. После этого снова повторяется процедура с раскладыванием два раза и в конце первый также указывает стопку, где находится задуманная карта. На каком месте от начала стопки (сверху) окажется задуманная карта?
Задачу решили:
107
всего попыток:
148
Катер проплывает мимо острова с постоянной скоростью. Расстояния до острова в 8, 10 и 11 часов были равны 7, 5 и 11 километров соответственно. Каким будет расстояние в 12 часов?
Задачу решили:
81
всего попыток:
115
3 литра воды разлили в два сосуда. Из каждого сосуда поочереди переливают половину воды, находящейся в нем, в другой сосуд. Найдите отношение объема воды в сосуде с меньшим количеством к объему воды в сосуде с большим после 100 переливаний. Объемы воды в литрах округлите с точностью до 1 миллилитра.
Задачу решили:
111
всего попыток:
149
Решите уравнение (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.
Задачу решили:
77
всего попыток:
127
Найти сумму всех целых чисел m и n таких, что log (nm) = log m * log n и log m и log n - целые числа.
Задачу решили:
50
всего попыток:
96
Найти количество упорядоченных троек целых положительных чисел a ≤ b ≤ c таких, что
Задачу решили:
47
всего попыток:
67
х1, x2, x3, x4, x5 - действительные числа такие, что
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|