Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
42
За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания? (Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)
Задачу решили:
56
всего попыток:
171
Два муравья проползли каждый по своему замкнутому маршруту на доске 9 × 9. Каждый полз только по сторонам клеток доски и побывал в каждой из 100 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?
Задачу решили:
56
всего попыток:
130
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.
Задачу решили:
106
всего попыток:
151
Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).
Задачу решили:
67
всего попыток:
123
По кругу лежат 100 белых камней. Дано целое число k в пределах от 1 до 50. За ход разрешается выбрать любые k подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в черный цвет. При каком максимальном k можно за несколько таких ходов покрасить все 100 камней в черный цвет?
Задачу решили:
41
всего попыток:
250
Среди X монет одна фальшивая (более лёгкая). Известно, что её заведомо можно найти не более, чем за 100 взвешиваний на чашечных весах без гирь, при этом каждую монету нельзя взвешивать более двух раз. Найдите наибольшее значение X.
Задачу решили:
85
всего попыток:
96
Известно, что при некотором a многочлен P(x) = xn-axn−2 для всех n > 2 делится на x-2. Чему равно максимальное значение a?
Задачу решили:
60
всего попыток:
134
Стоимость билета в кино составляет 50 рублей. В очереди в кассу стоит 2012 зрителей. 1006 из них имеет только купюры по 50 рублей,
Задачу решили:
45
всего попыток:
153
На доске 100×100 расставлены числа 1, 2 и 3 так, что в каждом прямоугольнике 1×3 встречаются все три числа, а в углах стоят единицы. Если эту доску раскрасить в шахматном порядке, то какое максимальное количество белых клеток будут единицами?
Задачу решили:
103
всего попыток:
129
Определите 3 последние цифры числа 79999.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|