Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
74
всего попыток:
80
Найти x+y, если известно, что (x+(x2+1)1/2)(y+(y2+1)1/2)=1
Задачу решили:
44
всего попыток:
48
В остроугольном треугольнике ABC точки A2, B2 и C2 - являются серединами высот AA1, BB1 и CC1. Найдите сумму углов B2A1C2, C2B1A2 и A2C1B2 в градусах.
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Задачу решили:
77
всего попыток:
84
Известно, что для действительных чисел n и m верны следующие равенства n=m+1, n4=m4. Найти n.
Задачу решили:
61
всего попыток:
88
Странные часы - где верх и низ на них не понятно, часовая, минутная и секундная стрелки - одинаковые. Стрелки А и Б указывают на часовые отметки, а стрелка В чуть не дошла до часовой отметки. Сколько прошло минут с начала текущего часа?
Задачу решили:
72
всего попыток:
92
На прямой отмечено несколько точек. После этого между любыми двумя соседними точками добавили по точке. Такую операцию повторили 3 раза, и в результате на прямой оказалось 65 точек. Сколько точек было вначале?
Задачу решили:
67
всего попыток:
78
Каждое из 50 чисел увеличили на 1 и при этом сумма их квадратов не изменилась. Потом все числа ещё раз увеличили на 1. На сколько изменится сумма квадратов на этот раз?
Задачу решили:
68
всего попыток:
257
Один стоит 10 рублей, дюжина - 20 рублей, десять дюжин - 30 рублей. А сколько стоит 20 дюжин?
Задачу решили:
88
всего попыток:
108
Найдите сумму углов x+y+z в градусах.
Задачу решили:
24
всего попыток:
42
Имеется 100 предметов, которые вместе весят 1000 грамм. Число m будем называть средним, если можно отобрать m предметов, которые весят 500 грамм. Какое максимальное количество средних чисел возможно?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|