Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
180
На столе лежит 100 монет орлами вверх. За одно действие вы можете перевернуть ровно 93 монетки. Какое наименьшее количество действий нужно совершить, чтобы все монетки лежали вверх решками.
Задачу решили:
25
всего попыток:
138
Для треугольника ABC верны следующие условия: cos B + cos C = 1 <C - <B = 46° Пусть O - центр описанной окружности, I - центр вписанной окружности, H - ортоцентр (точка пересечения высот) треугольника. Найти угол OIH.
Задачу решили:
42
всего попыток:
102
Периметр треугольника со сторонами a, b, c равен 2. Найдите максимальное значение k такое, что: (1-a)/b + (1-b)/c + (1-c)/a ≥ k.
Задачу решили:
81
всего попыток:
146
Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?
Задачу решили:
23
всего попыток:
57
Пусть n - положительное действительное число, такое что уравнение nx2=n[x2]+x имеет 2014 действительных решений ([x] - целая часть x). Множество всех таких n находятся в минимально возможном полуинтервале (a, b].
Задачу решили:
135
всего попыток:
163
Найдите площадь зеленого квадрата.
Задачу решили:
36
всего попыток:
69
В правильном выпуклом 12-угольнике ABCDEFGHIJKL со стороной 1 провели отрезки AF, BG и CH, которые при пересечении образовали треугольник. Найдите его площадь. Ответ укажите с точностью до 5-го знака после запятой.
Задачу решили:
37
всего попыток:
61
Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами: 1) f(19)=19 2) f(97)=97 3) f(f(x))=x Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.
Задачу решили:
68
всего попыток:
107
Алекс и Борис бегут супермарафон длиной 70 км. Скорость Алекса 7 км/ч, а Бориса - 10 км/ч. Однако Борис в любой момент может изменить скорость на 5 км/ч и бежать медленнее до самого конца. С какой вероятностью Алекс победит?
Задачу решили:
53
всего попыток:
71
Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|