Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
54
Найдите максимальную сумму натуральных чисел a, b, c и d таких, что a!+b!+c!=d!.
Задачу решили:
41
всего попыток:
58
Функция f(n) такая, что f(n)=1 при n<0 и f(n)=1-f(n-1)f(n-3)f(n-4) при n≥0. Найдите сумму значений функции от 0 до 2018.
Задачу решили:
52
всего попыток:
66
Легко вычислить 03+13+23=32, 13+23+33=62. Найдите следующие три последовательные натуральные числа, которые обладают таким же свойством. В ответе укажите первое из них.
Задачу решили:
65
всего попыток:
93
Найти площадь трапеции.
Задачу решили:
41
всего попыток:
60
Если сложить 10 правильных пятиугольников, то можно получить правильный десятиугольник. Точно так же из n правильных m-угольников (m≥5) сложили все возможные правильные n-угольники. Найдите сумму всех различных возможных m.
Задачу решили:
73
всего попыток:
74
Число n при делении на m дает в остатке 24, а 2n при делении на m дает в остатке 11. Найдите m.
Задачу решили:
48
всего попыток:
65
На рисунке A, B, C И D - конциклические точки. SAPD=27, SCPDQ=37, SBPC=12. Найдите SAPB.
Задачу решили:
49
всего попыток:
64
x+y+z=x2+y2+z2=x3+y3+z3=12. Найти x4+y4+z4.
Задачу решили:
42
всего попыток:
51
Стороны треугольника a, b, c являются целыми взаимно простыми числами и составляют арифметическую прогрессию. Самый большой угол треугольника в два раза больше самого меньшего. Найти периметр треугольника.
Задачу решили:
56
всего попыток:
76
Найти максимальное число, которое является делителем для всех чисел вида n7-n, где n - натуральное.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|