img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 17
всего попыток: 45
Задача опубликована: 01.05.19 08:00
Прислал: admin img
Источник: По мотивам задачи Н. Авилова "Книга"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

В ряду стоят несколько книг с разным количеством страниц. Каждая книга состоит из одной или нескольких глав и сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Если в главе более одной тетради, то все они вложены друг в друга. Первой из вложенных друг в друга тетрадей считается та, в которую вложены все остальные и т.д. Все страницы каждой книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради каждой книги равна 338.

Найдите максимально возможное общее колличество страниц во всех книгах ряда.

Задачу решили: 36
всего попыток: 58
Задача опубликована: 06.05.19 08:00
Прислал: admin img
Источник: Элементы большой науки: elementy.ru
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Marutand

Есть три стержня: A, B и C. На стержень A надеты 8 колец (дисков), наверху самое маленькое, каждое следующее больше предыдущего, а внизу самое большое. Два других стержня пусты. Необходимо перенести все кольца со стержня A на стержень C, пользуясь стержнем B как вспомогательным. В итоге кольца на стержне C должны быть в том же порядке, в котором они исходно находились на стержне A. Брать за один ход несколько колец нельзя. Кроме того, никогда нельзя класть большее кольцо поверх меньшего.

Запрещается переносить кольца между стержнями A и C напрямую.

За один ход перенести кольцо можно только либо с A на B (или обратно с B на A), либо с B на C (или обратно). Сколько ходов потребуется для переноса башни из 8 колец с A на C?

Задачу решили: 67
всего попыток: 95
Задача опубликована: 08.05.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Физрук дал Вовочке 10 пуль для стрельбы из пневматической винтовки. За каждый промах физрук отнимал одну пулю, а за каждое попадание в цель добавлял пулю. Пока не кончились пули Вовочка сделал 55 выстрелов. Сколько раз Вовочка попал в цель?

Задачу решили: 48
всего попыток: 58
Задача опубликована: 17.05.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Вовочка и физрук в тире сделали по 5 выстрелов. У обоих сумма результатов первых трех выстрелов  оказалась одинаковой, но вот в последними тремя выстрелами физрук выбил в три раза больше очков, чем Вовочка. Мишень в итоге оказалась с пробоинами 10, 9, 9, 8, 8, 5, 4, 4, 3, 2 очков. Определите сколько очков выбил каждый из них третьим выстрелом и введите сумму этих очков.

Задачу решили: 63
всего попыток: 103
Задача опубликована: 27.05.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: Marutand

Дата 10.02.2001 (ДД.ММ.ГГГГ), если убрать точки превращается в палиндром 10022001 (читается одинаково слева направо и справа налево). Найдите ближайшую предыдущую дату, которая обладает таким же свойством. В качестве ответа введите полученное из неё число (без точек).

Задачу решили: 54
всего попыток: 61
Задача опубликована: 29.05.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Пять детей решали задачи. Каждую задачу кто-то один из детей решил неправильно, а остальные — правильно. Вовочка решил меньше всех -  10 задач, а Машенька больше всех - 13. Сколько всего было задач?

Задачу решили: 44
всего попыток: 51
Задача опубликована: 31.05.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Вовочка и Машенька участвуют в школьной гонке. Трасса разделена на 42 участка одинаковой длины, в начале каждого участка — контрольный пункт. Вовочка пробегает участок за 9 мин, а Машенька — за 11 мин. У них есть один на двоих самокат, на котором любой из них проезжает один участок за 3 мин. Они стартуют одновременно, а на финише засчитывается время пришедшего последним. Дети договорились, что сначала Вовочка проезжает первую часть трассы на самокате, оставляет его в одном из контрольных пунктов и бежит дальше, а Машенька  — наоборот сначала бежит, потом берет самокат и едет остальную часть. Сколько участков должен проехать на самокате первый, чтобы их результат был наилучшим?

Задачу решили: 59
всего попыток: 65
Задача опубликована: 01.06.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

При отправке в пионерский лагерь детей рассаживали по автобусам так, чтобы в каждом было их одинаковое количество. Если в каждый автобус посадить по 22 ребенка, то останется один ребенок, а если убрать один автобус, то в каждый автобус можно посадить одинаковое количество детей. Сколько изначально было автобусов, при условии, что их было более двух?

Задачу решили: 42
всего попыток: 74
Задача опубликована: 03.06.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Полный комплект домино (28 костяшек) разложить на несколько кучек так, чтобы суммы очков в кучках составляли последовательные простые числа. Чему равно наибольшее число таких кучек?

Задачу решили: 43
всего попыток: 72
Задача опубликована: 07.06.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Найти сумму всех натуральных чисел, оканчивающиеся на 2006, которые после зачеркивания последних четырех цифр уменьшаются в целое число раз.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.