Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
41
Пусть a, b и c действительные неотрицательные числа такие, что a+b+c=2. Найдите максимум выражения (a2-ab+b2)*(b2-bc+c2)*(c2-ca+a2).
Задачу решили:
35
всего попыток:
43
xy+x+y=20, Найдите максимум значения выражения x2+y2+z2.
Задачу решили:
30
всего попыток:
42
Найти минимальное натуральное число, которое имеет ровно 100 натуральных делителей, включая 100.
Задачу решили:
22
всего попыток:
121
Переставить 2 спички так, чтобы получилось наибольшее значение: Допускаются цифры только в таком виде:
Задачу решили:
34
всего попыток:
106
Как много равносторонних треугольников можно составить из 6 спичек?
Задачу решили:
30
всего попыток:
48
Найдите количество действительных решений системы уравнения:
Задачу решили:
31
всего попыток:
50
Найдите количество действительных решений:
Задачу решили:
22
всего попыток:
26
Пусть f(x) - многочлен такой, что f(f(x))−x2 = xf(x). Найти f(2022).
Задачу решили:
27
всего попыток:
32
Пусть p и q такие натуральные числа, что уравнения x2-px+q=0 и x2-qx+p=0 имеют неравные целочисленные корни. Найти количество таких различных упорядоченных пар (p, q).
Задачу решили:
34
всего попыток:
38
Число 169=132=122+52. Но интересно, что 1692 - тоже равно сумме квадратов двух натуральных взаимно простых чисел. Найдите наибольшее из них.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|