Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
250
Среди X монет одна фальшивая (более лёгкая). Известно, что её заведомо можно найти не более, чем за 100 взвешиваний на чашечных весах без гирь, при этом каждую монету нельзя взвешивать более двух раз. Найдите наибольшее значение X.
Задачу решили:
28
всего попыток:
118
На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Задачу решили:
74
всего попыток:
94
Через какое максимальное количество синих точек можно пройти по дороге от красной точки к зеленой при условии, что ни по какой линии между точками нельзя проходить дважды? (Можно ходить только по прямым линиям и синим точкам.)
Задачу решили:
47
всего попыток:
95
Ярослав, Костя и Настя играют в быстрые шахматы. В одно время играют двое, проигравшего заменяет тот, кто не играл. Ярослав выиграл 10 раз, Костя - 21. Какое минимаьное число раз могли мальчики сыграть между собой?
Задачу решили:
32
всего попыток:
101
На доске 5х5 стоят 25 шашек реверси (с одной стороны белые, с другой - черные) белой стороной вверх. За один ход можно перевернуть любую шашку и все соседние по вертикали и горизонтали. За какое минимальное число ходов можно перевернуть шашки так, чтобы одна шашка была черной стороной вверх?
Задачу решили:
36
всего попыток:
58
Есть три стержня: A, B и C. На стержень A надеты 8 колец (дисков), наверху самое маленькое, каждое следующее больше предыдущего, а внизу самое большое. Два других стержня пусты. Необходимо перенести все кольца со стержня A на стержень C, пользуясь стержнем B как вспомогательным. В итоге кольца на стержне C должны быть в том же порядке, в котором они исходно находились на стержне A. Брать за один ход несколько колец нельзя. Кроме того, никогда нельзя класть большее кольцо поверх меньшего. Запрещается переносить кольца между стержнями A и C напрямую. За один ход перенести кольцо можно только либо с A на B (или обратно с B на A), либо с B на C (или обратно). Сколько ходов потребуется для переноса башни из 8 колец с A на C?
Задачу решили:
23
всего попыток:
67
На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет. Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|