Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
116
Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.
Задачу решили:
30
всего попыток:
60
Пусть f(x)=1/(x-1)+1/(x-2)+...+1/(x-100) и x1, x2, ..., xn - нули функции в каком-то порядке. Найдите максимум выражения ([x1]-[x2]+[x3]-[x4]+...±[xn])/(n+1), где [x] - целая часть x.
Задачу решили:
30
всего попыток:
55
Вовочка нашел наименьшее натуральное число, которое представяляет в виде суммы 2002 натуральных чисел, у которых одинаковая сумма цифр. Но, что удивительно, то его же можно представить в виде суммы 2003 чисел, обладающих таким же свойстовм относительно суммы цифр. Что это за число?
Задачу решили:
27
всего попыток:
45
Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|