Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
51
всего попыток:
77
Известно, что уравнение x3-ax2+bx-8=0 имеет все корни действительные, a и b - положительные числа. Найдите миимально возможное значение b.
Задачу решили:
47
всего попыток:
71
Найти минимальное n такое, что количество нулей в конце числа (n+20)!×(n+15)! делится на 2015.
Задачу решили:
30
всего попыток:
60
Пусть f(x)=1/(x-1)+1/(x-2)+...+1/(x-100) и x1, x2, ..., xn - нули функции в каком-то порядке. Найдите максимум выражения ([x1]-[x2]+[x3]-[x4]+...±[xn])/(n+1), где [x] - целая часть x.
Задачу решили:
104
всего попыток:
332
Найти количество квадратов, которые можно получить соединив любые 4 точки на рисунке.
Задачу решили:
53
всего попыток:
64
Пусть f(n) функция, которая возвращает ближайшее целое к n1/4.
Задачу решили:
41
всего попыток:
132
Найти наименьшее положительное натуральное число, которое не может быть выражено в виде суммы:
Задачу решили:
30
всего попыток:
57
14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?
Задачу решили:
30
всего попыток:
179
Известно, что cos(720°/7) является одним из корней уравнения ax6-bx4+cx2-x-1=0, где a, b, c - натуральные числа. Найдите a+b+c.
Задачу решили:
36
всего попыток:
63
Пусть a, b, c, d, e - действительные числа такие, что: c+a=15 ac+b+d=85 ad+bc+e=225 ae+bd=274 be=120 Найдите сумму всех возможных значений e.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|