img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 113
всего попыток: 404
Задача опубликована: 18.09.09 00:27
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Найти наименьшее целое число, большее единицы и которое нельзя получить из неё при помощи нескольких последовательных увеличений на целое число процентов от 1 до 100 (причём после каждого увеличения должно получаться также целое число).

+ 35
  
Задачу решили: 71
всего попыток: 99
Задача опубликована: 12.09.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В одном шотландском городке стояла школа, в которой учились ровно 12345678910  школьников. У каждого из них был шкаф для одежды — всего 12345678910 шкафов, причём шкафы были пронумерованы числами от 1 до 12345678910. А ещё в этой школе жили привидения — ровно 12345678910 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала 1-ое привидение открыло все шкафы; потом 2-ое привидение закрыло те шкафы, номер которых делился на 2; затем 3-третье привидение поменяло позиции (т. е. открыло шкаф, если он был закрыт, и закрыло — если он был открыт) тех шкафов, номер которых делился на 3; следом за ним 4-ое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т. д. Как только 12345678910-ое привидение поменяло позицию 12345678910-го шкафа — пропел петух и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?

Задачу решили: 60
всего попыток: 150
Задача опубликована: 06.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
разница между числами ai и bj не меньше 3 для любых i ≠ j,
разница между числами любых двух детей одного пола не меньше 2,
b10 наибольшее среди всех чисел.
Найдите, какое наименьшее значение может принимать b10.

Задачу решили: 17
всего попыток: 444
Задача опубликована: 07.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найти наибольшее целое число N для которого существует N троек неотрицательных целых чисел (ai, bi, ci) (i=1...N) таких, что:

для всех 1 ≤ i≠j ≤ N, ai≠aj, bi≠bj, ci≠cj;

для всех 1 ≤ i ≤ N, ai+bi+ci=2014.

Задачу решили: 58
всего попыток: 84
Задача опубликована: 15.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько всего пар натуральных чисел (n,m) таких, что 1 ≤n,m≤100 и nm=mn?

Задачу решили: 26
всего попыток: 62
Задача опубликована: 22.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Для членов последовательности натуральных чисел a1, a2,... известно, что iaj>jai для всех i>j. a1000=2014. Найдите минимальное возможное значение a500.

Задачу решили: 61
всего попыток: 82
Задача опубликована: 01.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В записи пятизначных чисел N и 2N содержатся все цифры 0, 1, ... , 9. Найти минимальное такое N.

Задачу решили: 109
всего попыток: 161
Задача опубликована: 17.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: levvol

Сколько всего четырехзначных чисел имеют в десятичной записи два и более нулей?

Задачу решили: 47
всего попыток: 70
Задача опубликована: 07.11.14 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть p и q простые числа, а r - целое, и такие, что

p(p+3)+q(q+3)=r(r+3). Найдите сумму всех возможных значений p.

Задачу решили: 36
всего попыток: 179
Задача опубликована: 05.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

12 различными натуральными числами заполнили таблицу 4x5. Любые два соседа (числа в клетках с общей стороной) имеют общий делитель больше 1. Если N - наибольшее число в таблице, найти наименьшее возможное значение N.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.