Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
113
всего попыток:
404
Найти наименьшее целое число, большее единицы и которое нельзя получить из неё при помощи нескольких последовательных увеличений на целое число процентов от 1 до 100 (причём после каждого увеличения должно получаться также целое число).
Задачу решили:
71
всего попыток:
99
В одном шотландском городке стояла школа, в которой учились ровно 12345678910 школьников. У каждого из них был шкаф для одежды — всего 12345678910 шкафов, причём шкафы были пронумерованы числами от 1 до 12345678910. А ещё в этой школе жили привидения — ровно 12345678910 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала 1-ое привидение открыло все шкафы; потом 2-ое привидение закрыло те шкафы, номер которых делился на 2; затем 3-третье привидение поменяло позиции (т. е. открыло шкаф, если он был закрыт, и закрыло — если он был открыт) тех шкафов, номер которых делился на 3; следом за ним 4-ое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т. д. Как только 12345678910-ое привидение поменяло позицию 12345678910-го шкафа — пропел петух и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?
Задачу решили:
60
всего попыток:
150
Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
Задачу решили:
17
всего попыток:
444
Найти наибольшее целое число N для которого существует N троек неотрицательных целых чисел (ai, bi, ci) (i=1...N) таких, что: для всех 1 ≤ i≠j ≤ N, ai≠aj, bi≠bj, ci≠cj; для всех 1 ≤ i ≤ N, ai+bi+ci=2014.
Задачу решили:
58
всего попыток:
84
Сколько всего пар натуральных чисел (n,m) таких, что 1 ≤n,m≤100 и nm=mn?
Задачу решили:
26
всего попыток:
62
Для членов последовательности натуральных чисел a1, a2,... известно, что iaj>jai для всех i>j. a1000=2014. Найдите минимальное возможное значение a500.
Задачу решили:
61
всего попыток:
82
В записи пятизначных чисел N и 2N содержатся все цифры 0, 1, ... , 9. Найти минимальное такое N.
Задачу решили:
109
всего попыток:
161
Сколько всего четырехзначных чисел имеют в десятичной записи два и более нулей?
Задачу решили:
47
всего попыток:
70
Пусть p и q простые числа, а r - целое, и такие, что p(p+3)+q(q+3)=r(r+3). Найдите сумму всех возможных значений p.
Задачу решили:
36
всего попыток:
179
12 различными натуральными числами заполнили таблицу 4x5. Любые два соседа (числа в клетках с общей стороной) имеют общий делитель больше 1. Если N - наибольшее число в таблице, найти наименьшее возможное значение N.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|