Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
56
Пусть m и n - различные натуральные числа такие, что их средние гармоническое, геометрическое и арифметическое тоже натуральные числа. Чему равно минимальное возможное значение среднего арифметического?
Задачу решили:
59
всего попыток:
89
Для действительных чисел x, y, z, u верны следующие уравнения: x2+y2=16, z2+u2=25, xu-yz=20. Найти максимум x·z.
Задачу решили:
44
всего попыток:
63
Рассмотрим все пары ненулевых целых чисел (a, b) таких, что уравнение (ax-b)2+(bx-a)2=x имеет хотя бы одно целое решение. Найдите сумму всех решений уравнения.
Задачу решили:
35
всего попыток:
87
Пусть целые положительные числа a ≥ b такие, что (a+1)/b + (b+1)/a - тоже целое. Найдите сумму всех таких a меньших 1000.
Задачу решили:
53
всего попыток:
65
Известно, что [x+0,19]+[x+0,20]+...+[x+0,91]=546. Найдите [100x]. ([x] - целая часть числа x.)
Задачу решили:
97
всего попыток:
109
Периметр одного треугольника равен 25, второго - 35, шестиугольной звезды - 50. Чему равен периметр зеленого шестиугольника?
Задачу решили:
32
всего попыток:
67
Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
Задачу решили:
52
всего попыток:
57
На доске были написаны несколько различных натуральных чисел. Сумму этих чисел поделили на их произведение, а после этого стерли самое маленькое число и поделили сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число стерли?
Задачу решили:
48
всего попыток:
53
У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?
Задачу решили:
41
всего попыток:
46
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|