img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 43
Задача опубликована: 08.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В выражении DONALD+GERALD = ROBERT каждой букве соответствует  одна цифра от 0 до 9. Известно, что D=5. В качестве ответа запишите все цифры буквами в порядке от 0 до 9.

Задачу решили: 28
всего попыток: 33
Задача опубликована: 12.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Известно, что a2+b2=1, c2+d2=1, ac+bd=0. Найти ab+cd.

Задачу решили: 24
всего попыток: 26
Задача опубликована: 16.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Какое количество сторон у вписанного в окружность многоугольника с наибольшей суммой квадратов сторон?

Задачу решили: 45
всего попыток: 74
Задача опубликована: 15.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите сумму всех произведений xy целых решений уравнения x3-y3=91. 

Задачу решили: 38
всего попыток: 60
Задача опубликована: 12.06.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

В равнобедренном треугольнике ABC (|AB|=|BC|=10) перпендикуляр из вершины C к стороне AB пересекает её в точке D, |AD|=6. Перпендикуляр из точки D к стороне AC пересекает её в точке E.

Два перпендикуляра в треугольнике

Найти |BE|. Ответ укажите округлив до второго знака после запятой. 

Задачу решили: 36
всего попыток: 47
Задача опубликована: 21.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Найдите минимальную длину отрезка, который содержит все решения неравенства:
4x2/(1-(1+2x)1/2)2 < 2x+9.

Задачу решили: 32
всего попыток: 32
Задача опубликована: 21.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите сумму всех целых положительных чисел n таких, что произведение цифр в десятичной записи которых равно n2-10n-22.

Задачу решили: 31
всего попыток: 52
Задача опубликована: 26.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Два парахода идут по морю с постоянными скоростями по фиксированным направлениям. В 9:00 они, когда они начали свое движение расстояние между ними было 20 км, в 9:35 - 15 км, а в 9:55 - 13 км. Через сколько минут после начала движения расстояние между ними стало минимальным?

Задачу решили: 30
всего попыток: 35
Задача опубликована: 09.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.

Задачу решили: 27
всего попыток: 42
Задача опубликована: 20.01.21 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Множество значений суммы S = a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d), где a, b, c, d - положительные действительные числа расположены внутри некоторого минимально возможного отрезка действительной оси. Укажите середину этого отрезка.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.