Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
36
всего попыток:
67
В ряд 111...111 записаны 2018 единиц. Какое наибольшее количество знаков "+" можно поставить между единицами, чтобы полученное выражение давало в сумме 8102?
Задачу решили:
51
всего попыток:
69
Натуральные числа m и n такие, что 2mn=(m+4)*(n+4) и m<n. Найдите сумму всех возможных m.
Задачу решили:
43
всего попыток:
64
Вершины B и C равностороннего треугольника лежат на окружности радиуса 6, а сторона AB перпендикулярна ее диаметру и пересекается с ним в точке D, |BD|=3. Найдите длину стороны треугольника.
Задачу решили:
34
всего попыток:
36
Функция f определена на множестве целых чисел, принимает только целые числа и при этом f(2m)+2f(n)=f(f(m+n)) для всех целых m и n. Найдите максимальное возможное значение f(2019), если f(0)=2019.
Задачу решили:
53
всего попыток:
59
Найти все целые n и m такие, что 2n+1=3m. В качестве ответа введите сумму всех возможных значений n и m.
Задачу решили:
68
всего попыток:
102
Число 14 представили в виде суммы натуральных чисел и перемножили слагаемые. Какое максимальное произведение могло получиться?
Задачу решили:
52
всего попыток:
71
Отношение среднего геометрического двух чисел к их среднему арифметическому равно 12:13. Найти максимальное отношение этих чисел.
Задачу решили:
38
всего попыток:
53
Найдите наименьшее натуральное число, равное половине суммы его собственных делителей.
Задачу решили:
36
всего попыток:
62
Найти сумму всех целых значений m таких, что при некоторых целых n верно: m2+n2+mn-n=17.
Задачу решили:
36
всего попыток:
52
Найти наименьшую сумму различных натуральных попарно взаимнопростых чисел a, b, c и d таких, что a2+b2=c2+d2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|