![]()
Лента событий:
vochfid решил задачу "Площадь проекции" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
34
На какое минимальное число частей можно разрезать прямыми линиями любой треугольник, так что из них можно сложить равнобедренный треугольник той же площади. ![]()
Задачу решили:
45
всего попыток:
60
Натуральное число n > 8 назовем хорошим, если каждое из чисел n, n+1, n+2 и n+3 делится на сумму своих цифр. Некоторое хорошее число заканчивается цифрой 8. Какая предпоследняя цифра у него? ![]()
Задачу решили:
41
всего попыток:
46
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n? ![]()
Задачу решили:
38
всего попыток:
65
В какое наибольшее число цветов можно раскрасить все клетки< доски размера 10x10 так, чтобы в каждой строке и в каждом столбце находились клетки не более, чем пяти различных цветов? ![]()
Задачу решили:
48
всего попыток:
55
В вершинах кубика написали числа от 1 до 8, а на каждом ребре модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах? ![]()
Задачу решили:
28
всего попыток:
51
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел? ![]()
Задачу решили:
37
всего попыток:
65
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце? ![]()
Задачу решили:
31
всего попыток:
42
На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече? ![]()
Задачу решили:
44
всего попыток:
64
По двум пересекающимся дорогам с равными постоянными скоростями движутся два автомобиля. Оказалось, что как в 17.00, так и в 18.00 первый находился в два раза дальше от перекрестка, чем второй. Через какое наибольшее количество минут после 17:00 второй автомобиль мог проехать перекресток? ![]()
Задачу решили:
34
всего попыток:
58
Имеется набор гирь со следующими свойствами: 1) В нем есть 5 гирь, попарно различных по весу. 2) Для любых двух гирь найдутся две другие гири того же суммарного веса. Какое наименьшее число гирь может быть в этом наборе?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|