Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
61
Луч света вышел из одного угла и, отразившись 6 раз от зеркальных сторон, попал в другой угол. Определите расстояние, которое он прошел. (Ответ введите округлив с точностью до двух знаков после десятичной запятой.)
Задачу решили:
22
всего попыток:
27
Числа 1, 2, 3, ..., 2018 разделены на две группы: Для каждого такого разбиения вычисляется сумма |a1-b1|+|a2-b2|+...+|a1009-b1009|. И затем все полученные различные значения сумм для всех возможных разбиений складываются. Какое значение получится?
Задачу решили:
24
всего попыток:
40
Равнобедренный треугольник ABC разделен на три треугольника, как показано на рисунке: При этом прямоугольные треугольники BCD и BDE равны по площади. Все вписанные окружности имеют радиус 1. Найдите площадь треугольника ABC.
Задачу решили:
39
всего попыток:
71
В параллелограмме площадью 2009 проведены две параллельные сторонам линии, которые пересекаются на диагонали. Известно, что площади параллелограммов 1, 2 и 3 являются различными целыми числами и составляют геометрическую прогрессию. Определите максимальную площадь параллелограмма 1.
Задачу решили:
28
всего попыток:
57
Стороны треугольника со длинами сторон 3, 4 и 5 являются диаметрами трех окружностей. Еще одна окружность описывает эти три окружности. Определите ее диаметр.
Задачу решили:
41
всего попыток:
58
Функция f(n) такая, что f(n)=1 при n<0 и f(n)=1-f(n-1)f(n-3)f(n-4) при n≥0. Найдите сумму значений функции от 0 до 2018.
Задачу решили:
15
всего попыток:
28
Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.
Задачу решили:
41
всего попыток:
60
Если сложить 10 правильных пятиугольников, то можно получить правильный десятиугольник. Точно так же из n правильных m-угольников (m≥5) сложили все возможные правильные n-угольники. Найдите сумму всех различных возможных m.
Задачу решили:
49
всего попыток:
64
x+y+z=x2+y2+z2=x3+y3+z3=12. Найти x4+y4+z4.
Задачу решили:
42
всего попыток:
51
Стороны треугольника a, b, c являются целыми взаимно простыми числами и составляют арифметическую прогрессию. Самый большой угол треугольника в два раза больше самого меньшего. Найти периметр треугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|