Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
20
Для произвольного треугольника ABC есть внутренняя точка K, являющаяся общей вершиной трех равных квадратов, по две остальные вершины которых лежат на сторонах треугольника. Если описать окружность с центром в этой точке и радиусом, равным стороне квадрата, - она пересечёт стороны треугольника как раз в этих шести вершинах. Найдите квадрат радиуса этой окружности для треугольника со сторонами (7,15,20).
Задачу решили:
19
всего попыток:
37
У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг. Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?
Задачу решили:
36
всего попыток:
52
log4(x+2y)+log4(x−2y)=1, найти мининум |x|-|y| для целых x и y.
Задачу решили:
28
всего попыток:
30
Для положительных x, y и z таких, что x2+y2+z2+2xyz=1, найдите максимум xy+yz+zx-2xyz.
Задачу решили:
26
всего попыток:
35
Найти наименьшее натуральное число, сумма собственных делителей которого равна 106. Собственным делителем считается делитель числа, меньший самого числа.
Задачу решили:
33
всего попыток:
38
Найди сумму двух наименьших натуральных чисел n таких, что n - кратно 5, n+1 - кратно 7, n+2 - кратно 9, n+3 - кратно 11.
Задачу решили:
26
всего попыток:
41
Пусть a, b и c действительные неотрицательные числа такие, что a+b+c=2. Найдите максимум выражения (a2-ab+b2)*(b2-bc+c2)*(c2-ca+a2).
Задачу решили:
30
всего попыток:
42
Найти минимальное натуральное число, которое имеет ровно 100 натуральных делителей, включая 100.
Задачу решили:
37
всего попыток:
53
Найти две последние цифры значения выражения 1100+2100+3100+...+100100.
Задачу решили:
29
всего попыток:
31
Пусть p и q − положительные целые числа такие, что оба уравнения x2-px + q= 0 и x2-qx + p = 0 имеют различные целые корни. Найдите значение p+q.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|