Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
46
всего попыток:
85
В треугольнике угол ABC прямой. Точка P на стороне AC выбрана так, что |AP|/|PC|=3/2, а точка Q такая, что |AQ|/|QB|=3, а угол AQP=2*PQC. Чему равен угол PQC в градусах?
Задачу решили:
42
всего попыток:
152
Найдите все треугольники, длины сторон которых целые числа и площади и периметры у каждого равны между собой (как числа). У каждого такого треугольника выберите самую длинную сторону и сложите все эти длины. Какое число у вас получилось?
Задачу решили:
18
всего попыток:
122
Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).
Задачу решили:
54
всего попыток:
105
Известно, что для многочлена 5-й степени p(x): Чему равно p(7)?
Задачу решили:
17
всего попыток:
444
Найти наибольшее целое число N для которого существует N троек неотрицательных целых чисел (ai, bi, ci) (i=1...N) таких, что: для всех 1 ≤ i≠j ≤ N, ai≠aj, bi≠bj, ci≠cj; для всех 1 ≤ i ≤ N, ai+bi+ci=2014.
Задачу решили:
46
всего попыток:
84
Известно, что a15+a25 +...an5= 2004, ai - целые числа. Найдите минимальное положительное значение a1+a2 +...an?
Задачу решили:
45
всего попыток:
94
В прямоугольном треугольники периметр (P) и площадь (S) - целые числа и (P+4)=(S-1)(P-4). Найдите сумму всех возможных переиметров таких треугольников?
Задачу решили:
38
всего попыток:
115
Действительное число x удовлетворяет условию: 1/[x]=1/[2x]+1/[3x]+1/[5x], где [x] - целая часть от x. Пусть m - наибольшее положительное, а M - наименьшее положительное значения такие, что m≤x≤M, и M+m представляется в виде нескоратимой дроби p/q. Чему равно p+q?
Задачу решили:
40
всего попыток:
62
Пусть N равно произведению всех возможных значений (n2+nm+m2) для всех пар натуральных чисел n и m таких, что 1 ≤ n < m ≤ 100. Чему равен остаток от деления N на 101?
Задачу решили:
25
всего попыток:
138
Для треугольника ABC верны следующие условия: cos B + cos C = 1 <C - <B = 46° Пусть O - центр описанной окружности, I - центр вписанной окружности, H - ортоцентр (точка пересечения высот) треугольника. Найти угол OIH.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|